Abstract:
In a road parameter estimation apparatus, a marker-based estimator extracts, based on markers extracted by a marker extractor, at least one lane line that demarcates a road into plural regions in a width direction of the road, and estimates, based on the extracted at least one lane line, a value of at least one feature parameter of the road as a maker-based estimation result. The at least one feature parameter of the road represents at least one feature of the road. A model-based estimator estimates, based on the at least one model-based demarcation line, a value of the at least one feature parameter of the road parameter as a model-based estimation result. A determiner compares the at least one lane line with the model-based demarcation line to accordingly determine whether to use the marker-based estimation result or the model-based estimation result.
Abstract:
In a travelling road estimating apparatus, an estimator estimates, based on the coordinates of at least one of edge points included in a selected candidate, a road parameter using a previously prepared filter having an adjustable response level. The road parameter is associated with a condition of the travelling road relative to the vehicle and a shape of the travelling road. A determiner determines whether there is an unstable situation that causes an accuracy of estimating the edge points by an edge extractor to be reduced. A response level adjuster adjusts the response level of the filter in accordance with determination of whether there is an unstable situation that causes an accuracy of estimating the edge points by the edge extractor to be reduced.
Abstract:
An apparatus for recognizing lane partition lines on opposite sides of a traveling lane of a vehicle based on a forward image captured by a camera mounted in the vehicle. In the apparatus, an allowable range limiter is configured to, based on a learned value of a lane width learned by a lane width learner, limit allowable ranges for the respective lane partition lines, where in the allowable ranges the respective lane partition lines are allowed to be detected in the forward image. A lane change determiner is configured to determine whether or not there is a lane change made by the vehicle. The allowable range limiter is further configured to, if it is determined by the lane change determiner that there is a lane change, enlarge at least one of the allowable ranges limited by the allowable range limiter based on the learned value of the lane width.
Abstract:
An apparatus for recognizing lane partition lines on opposite sides of a traveling lane in a processing area of a forward image captured by a camera mounted in a vehicle. In the apparatus, a lane change determiner is configured to determine whether or not there is a lane change made by the vehicle. A processing area changer is configured to, while it is determined by the lane change determiner that there is a lane change, change the processing area from a predefined processing area to a processing area that can accommodate the lane change.
Abstract:
An in-vehicle system as a road curvature detection device calculates a curvature of a road in front of a vehicle based on an acquired front scene image. The in-vehicle system receives gradient information from the data map. The gradient information corresponds to a current road section on the road on which the vehicle drives. The in-vehicle system detects a gradient accuracy of the received gradient information. When the current road section has a gradient, i.e. the road is an uphill or downhill road, the in-vehicle system selects an appropriate special detection methods based on the gradient accuracy of the received gradient information, and calculates a road curvature by using the selected special detection method. Each of the special detection methods calculates a road curvature while effectively suppressing influence of a road gradient indicated by the received gradient information.
Abstract:
An on-board camera captures an image of a travel lane ahead of an own vehicle. At least one state acquisition apparatus acquires an acquired value indicating a state of the own vehicle. A travel lane marking recognition system recognizes a travel lane marking that demarcates the travel lane from an image captured by the on-board camera. The travel lane marking recognition system sets a reliability level of the recognized travel lane marking based on the acquired value of the at least one state acquisition apparatus. When the reliability level is higher than a first predetermined threshold, the travel lane marking recognition system performs driving control of the own vehicle based on the recognized travel lane marking. When the reliability level is lower than the first predetermined threshold, the travel lane marking recognition system performs a deviation warning of deviation from the travel lane based on the recognized travel lane marking.
Abstract:
In a lane boundary line recognition device, a calculation section calculates a degree of uncertainty which affects a correct recognition of white lines on a roadway of a vehicle. A learning section updates a learning value of the degree of uncertainty. A recognition suppression section suppresses execution of a recognition process of recognizing white lines on the roadway when the updated learning value is more than a threshold value. An environment change judgment section judges whether or not a road environment has changed. A learning resetting section resets the learning value of the degree of uncertainty to a previous learning value when the detection result of the environment change judgment section indicates an occurrence of change of the road environment.
Abstract:
A cruising zone division line recognition apparatus has an image acquisition device that acquires an image including a road surface ahead of a vehicle, and an image recognition device. The image recognition device adds blurring to an area including the road surface in the acquired image and recognizes a cruising zone division line from the image to which blurring has been added. When blurring is added, a cruising zone division line that is an intermittent double line included in a captured image can be made unclear. Therefore, the recognized cruising zone division line can be prevented from becoming a discontinuous, disjointed line.
Abstract:
An apparatus for recognizing a lane is provided. The apparatus performs a near-field white line recognition process and calculates road parameters (lane position, lane inclination, lane curvature and lane width) near the vehicle. The road parameters are calculated using the extended Kalman filter. In the calculation, the calculated lane curvature is used as a lane curvature to be included in predicted values. The apparatus outputs the calculated road parameters to a warning/vehicle-control apparatus.
Abstract:
In a lane boundary line recognition device, an extraction unit extracts lane boundary line candidates from image acquired by an in-vehicle camera. A position estimation unit estimates a position of each lane boundary line based on drive lane information containing a number of drive lanes on a roadway and a width of each drive lane when (a) and (b) are satisfied, (a) when an own vehicle drives on an own vehicle lane specified by the drive lane specifying unit, and (b) when the lane boundary line candidate corresponds to lane boundary lines of the own vehicle lane. A likelihood calculation unit increases a likelihood of the lane boundary line candidate when a distance between a position of the lane boundary line candidate and an estimated position of the lane boundary line candidate obtained by the drive lane boundary line position estimation unit is within a predetermined range.