Abstract:
A selective catalytic reduction system may include a single housing defining a single centerline axis. The selective catalytic reduction system may also include a diesel particulate filter disposed within the single housing and having a DPF center axis aligned with the single centerline axis. The selective catalytic reduction system may also include an SCR catalyst disposed within the single housing and having a center axis aligned with the single centerline axis. In some implementations, the diesel particulate filter may include one or more SiC filters. In some implementations, the SCR catalyst may include one or more extruded SCR catalysts.
Abstract:
A selective catalytic reduction system may include a single housing defining a single centerline axis. The selective catalytic reduction system may also include a diesel particulate filter disposed within the single housing and having a DPF center axis aligned with the single centerline axis. The selective catalytic reduction system may also include an SCR catalyst disposed within the single housing and having a center axis aligned with the single centerline axis. In some implementations, the diesel particulate filter may include one or more SiC filters. In some implementations, the SCR catalyst may include one or more extruded SCR catalysts.
Abstract:
A selective catalytic reduction system may include a single housing defining a single centerline axis. The selective catalytic reduction system may also include a diesel particulate filter disposed within the single housing and having a DPF center axis aligned with the single centerline axis. The selective catalytic reduction system may also include an SCR catalyst disposed with-in the single housing and having a center axis aligned with the single centerline axis. In some implementations, the diesel particulate filter may include one or more SiC filters. In some implementations, the SCR catalyst may include one or more extruded SCR catalysts.
Abstract:
Various embodiments relate to a selective catalytic reduction system for treating exhaust gases of an internal combustion engine. The system includes an inlet section that receives exhaust gases from the engine. The system includes a tank storing diesel exhaust fluid (“DEF”), a pump, a valve, and an injector each in fluid communication with each other. The injector is coupled to the inlet exhaust pipe and configured to inject DEF into the exhaust gases flowing through the inlet exhaust pipe in a plurality of pulses. Each of the plurality of pulses injects a constant volume of DEF into the inlet exhaust pipe. The system further includes a controller configured to operate the pump and the valve such that a time interval between successive constant volume pulses of the plurality of pulses is varied based on a variable oxides of nitrogen content of the exhaust gases.