Abstract:
An optical device for corneal measuring includes a light source module, a first optical module, a second optical module including a reference mirror, a light splitter and an image analysis unit. The light of the light source module is transmitted to the first and second optical modules through the light splitter. The light is transmitted to a cornea through the light splitter and the first optical module and reflected by the cornea to form a first light, the light is transmitted to the reference mirror through the light splitter and reflected by the reference mirror to form a second light. The first and second lights are transmitted to the light splitter and the image analysis unit. The reference mirror moves along a first direction, and when the first light and the second light interfere with each other, a relative optical path length is obtained.
Abstract:
An optical apparatus includes a light source, an optical coupling module, a reference light reflection module, and a data processing module. The light source provides an incident light. The optical coupling module divides the incident light into a reference light and a detection light emitting to the reference light reflection module and the object respectively. The reference light reflection module reflects the reference light and rapidly change the optical path of the reference light. The optical coupling module receives a first reflected light generated by the reference light reflection module reflecting the reference light and a second reflected light generated by the object reflecting the detection light and it interferes the first reflected light and second reflected light to generate a light interference signal. The data processing module receives and analyzes the light interference signal to obtain an optical detection result related to the object.
Abstract:
An optical apparatus applied to ophthalmology detection is disclosed. The optical apparatus includes an image capturing unit, a data comparing unit, a detection unit, a location determining unit, and a data output unit. The image capturing unit captures images of different portions of a face of a person to be tested to obtain a plurality of face images. The data comparing unit compares the plurality of face images with a built-in database. The detection unit detects on an eye of the person to be tested. The location determining unit automatically determines whether the eye detected by the detection unit is left-eye or right-eye. The data output unit selectively outputs a detection result of the detection unit, a comparing result of the data comparing unit, and/or a determining result of the location determining unit.
Abstract:
A catheter apparatus includes a replaceable module, a main body portion and a sensing module. The main body portion includes a tube, a urine guide opening and an elastic unit. The replaceable module includes a control unit. A first terminal of the tube is coupled to the replaceable module and a second terminal of the tube is inserted into the bladder. The urine guide opening is disposed at the second terminal of the tube and used to guide urine into the tube when the second terminal of the tube is inserted into the bladder. The elastic unit is disposed at the second terminal of the tube and coupled to the control unit. The sensing module is coupled to the control unit and used to sense whether the second terminal of the tube is inserted to the correct position in the bladder and transmit sensing result to the control unit.
Abstract:
An optical measuring device includes a light source module, a light coupling module, a reference mirror module and a processing unit. The light source module can provide a light. The light of the light source module is transmitted to the reference mirror module and an under-test object through the light coupling module. The light is reflected by the reference mirror module and the under-test object to form a first light and a second light, respectively. The first and second lights are then transmitted to the processing unit through the light coupling module. The processing unit generates an adjusting signal according to the first and second lights. The processing unit transmits the adjusting signal to the reference mirror module. The reference mirror module adjusts the reference mirror module according to the adjusting signal.
Abstract:
An optical device for corneal measuring includes a light source module, a first optical module, a second optical module including a reference mirror, a light splitter and an image analysis unit. The light of the light source module is transmitted to the first and second optical modules through the light splitter. The light is transmitted to a cornea through the light splitter and the first optical module and reflected by the cornea to form a first light, the light is transmitted to the reference mirror through the light splitter and reflected by the reference mirror to form a second light. The first and second lights are transmitted to the light splitter and the image analysis unit. The reference mirror moves along a first direction, and when the first light and the second light interfere with each other, a relative optical path length is obtained.