Abstract:
A power distribution system and method includes a controller that is configured to control a switching power converter. In at least one embodiment, the controller includes a compensation current control circuit to control a compensation current that reduces and, in at least one embodiment, approximately eliminates variations in current drawn by the controller during a particular operational time period. In at least one embodiment, the power distribution system is a lamp that includes the controller, a switching power converter, and one or more light sources, such as light emitting diodes.
Abstract:
A bipolar junction transistor (BJT) may be used to generate a supply voltage for operating a controller, such as a lighting controller for a LED-based light bulb. A base of the BJT may receive current generated from the supply voltage to control operation of the BJT. Although the base of the BJT would be at a lower voltage than the emitter, a base drive circuit may be coupled between the emitter and the base of the BJT to increase the voltage. As one example, the base drive circuit may be a charge pump. In another example, the BJT may function as its own charge pump. In yet another example, a positive and a negative base current of the BJT may be independently controlled to regulate an output supply voltage VDD from the BJT.
Abstract:
Systems and methods for learning dimmer characteristics provide improved efficiency in operating lighting devices. In one embodiment, an apparatus includes a lamp controller that is configured to monitor voltage information associated with one or more lamps or a dimmer of a system, adjust one or more parameters of an attach current profile in conformity with the voltage information to arrive at a selected attach current profile, and apply within the system the selected attach current profile.
Abstract:
A circuit for powering high-efficiency lighting devices from a thyristor-controlled dimmer includes a power converter for powering the high-efficiency lighting devices from input terminals of the circuit. The circuit also includes a control circuit that controls the input current drawn by the input terminals at least while the power converter transfers energy to the lighting devices. The circuit also includes a sensing circuit that determines or measures at least one attach current characteristic at the input terminals and stores an indication of the characteristic for subsequent operation of the control circuit.
Abstract:
An electronic system and method include a controller to operate in a start-up mode to accelerate driving a load to an operating voltage and then operates in a post-start-up mode. A start-up condition occurs when the controller detects that a load voltage is below a predetermined voltage threshold level. The predetermined voltage threshold level is set so that the controller will boost the voltage to an operating value of a load voltage at a faster rate than during normal, steady-state operation. The controller causes a switching power converter to provide charge to the load at a rate in accordance with a start-up mode until reaching an energy-indicating threshold. When the energy-indicating threshold has been reached, the controller causes the switching power converter to (i) decrease the amount of charge provided to the load relative to the charge provided during the start-up mode and (ii) operate in a distinct post-start-up-mode.
Abstract:
In accordance with embodiments of the present disclosure, a system may include an impedance estimator configured to estimate an impedance of a load and generate a target current based at least on an input voltage and the impedance, a voltage feedback loop responsive to a difference between the input voltage and an output voltage of the load, and a current controller configured to, responsive to the voltage feedback loop, the impedance estimator, and the input voltage, generate an output current to the load.A controller may be configured to sequentially apply switch configurations to a power converter to selectively activate or deactivate each of a plurality of switches of the power converter in accordance with a selected operational mode of the power converter, wherein the plurality of operational modes may include a single-ended buck mode for switching a polarity of the output voltage in which: during a charging phase, at least one of the plurality of switches is activated such that a power inductor is coupled between a first terminal of a power source and a particular one of the first output terminal and the second output terminal; and during a transfer phase, at least one of the plurality of switches is activated such that the power inductor is coupled between a second terminal of the power source and the particular one of the first output terminal and the second output terminal.A controller may be configured to sequentially apply a plurality of switch configurations of a power converter in order to operate the power converter as a differential output converter to switch a polarity of the output voltage, such that: during a charging phase of the power converter, a power inductor is coupled between one of a first terminal and a second terminal of the power source and one of a first terminal and a second terminal of the output load, during a transfer phase of the power converter, at least one of the plurality of switches is activated in order to couple the power inductor between the second terminal of the power source and one of the first terminal of the output load and the second terminal of the output load, wherein the output voltage comprises a differential voltage between the first terminal and the second terminal.A power converter may include a power inductor, a plurality of switches arranged to sequentially operate in a plurality of switch configurations, an output for producing the output voltage, wherein a first switch is coupled to a first output terminal of the output and a second switch is coupled to a second output terminal of the output, and a linear amplifier coupled to the output. The controller may be configured to, in a linear amplifier mode of the power stage, enable the linear amplifier to transfer electrical energy from an input source of the power stage to the load, and in at least one mode of the power stage other than the linear amplifier mode, sequentially apply switch configurations from the plurality of switch configurations to selectively activate or deactivate each of the plurality of switches in order to transfer the electrical energy from the input source to the load.
Abstract:
A power distribution system and method includes a controller that is configured to control a switching power converter. In at least one embodiment, the controller includes a compensation current control circuit to control a compensation current that reduces and, in at least one embodiment, approximately eliminates variations in current drawn by the controller during a particular operational time period. In at least one embodiment, the power distribution system is a lamp that includes the controller, a switching power converter, and one or more light sources, such as light emitting diodes.
Abstract:
An electronic system and method include a controller to actively control power transfer from a primary winding of a switching power converter to an auxiliary-winding of an auxiliary power supply. The switching power converter is controlled and configured such that during transfer of power to the auxiliary-winding, the switching power converter does not transfer charge to one or more secondary-windings of the switching power converter. Thus, the switching power converter isolates one or more secondary transformer winding currents from an auxiliary-winding current. By isolating the charge delivered to the one or more secondary-windings from charge delivered to the auxiliary-winding, the controller can accurately determine an amount of charge delivered to the secondary-windings and, thus, to a load.
Abstract:
In at least one embodiment, an electronic system and method includes a controller to control a switching power converter in at least two different modes of operation depending on whether the controller detects a dimmer or not and/or whether a load requests more power than either of the two operational modes can provide. In at least one embodiment, the controller detects whether a dimmer is phase cutting an input voltage to a switching power converter. The controller operates the switching power converter in a first mode if the dimmer is detected, and the controller operates the switching power converter in a second mode if the dimmer is not detected. The controller also transitions between operating the switching power converter in the first mode and the second mode if a status of detection of the dimmer changes.
Abstract:
A controller may be configured to sequentially apply a plurality of switch configurations of a power converter in order to operate the power converter as a differential output converter to switch a polarity of the output voltage, such that: during a charging phase of the power converter, a power inductor is coupled between one of a first terminal and a second terminal of the power source and one of a first terminal and a second terminal of the output load, during a transfer phase of the power converter, at least one of the plurality of switches is activated in order to couple the power inductor between the second terminal of the power source and one of the first terminal of the output load and the second terminal of the output load, wherein the output voltage is a differential voltage between the first terminal and the second terminal.