Abstract:
A perpendicular magnetic recording medium having a substrate, an amorphous soft underlayer and a magnetic layer for perpendicular recording has reduced DC noise and surface roughness, which reduces the head-to-media spacing and the head-to-amorphous soft underlayer spacing.
Abstract:
A perpendicular magnetic recording medium having a substrate, a seedlayer on the substrate and a magnetic underlayer on the seedlayer, the magnetic underlayer having an easy axis of magnetization substantially directed in a radial or transverse direction, and a process for manufacturing the perpendicular magnetic recording medium are disclosed.
Abstract:
A perpendicular magnetic recording medium having a substrate and a magnetic underlayer on the substrate, the magnetic underlayer having an easy axis of magnetization substantially directed in a radial or transverse direction, and a process for manufacturing the perpendicular magnetic recording medium are disclosed.
Abstract:
A perpendicular magnetic recording medium having a substrate, a seedlayer on the substrate and a magnetic underlayer on the seedlayer, the magnetic underlayer having an easy axis of magnetization substantially directed in a radial or transverse direction, and a process for manufacturing the perpendicular magnetic recording medium are disclosed.
Abstract:
The present invention relates to an apparatus for treating organic waste including: a first circulation line having a first circulation pump connected thereon so as to supply a portion of the organic waste being acid fermented in an acid fermenter to a methane fermenter; a second circulation line having a second circulation pump connected thereon so as to supply a portion of anaerobic digestive fluid methane fermented in the methane fermenter to the acid fermenter; and vortex generating means having a plurality of first, second and third nozzles disposed in the methane fermenter so as to allow the anaerobic digestive fluid in the methane fermenter to be agitated by vortices generated thereof.
Abstract:
A media for perpendicular recording and a method of creating the media is provided. The media includes a hard recording layer and a soft underlayer (SUL). The SUL is composed of at least two anti-ferromagnetically coupled (AFC) sub-underlayers. The sub-underlayers respond to a magnetic field established during dynamic reversal with respective magnetic fields. The sub-underlayers are formed and disposed to differ in one or more magnetic moment, anisotropy, and thickness, so that their respective magnetic fields constructively interfere in one or more points in the hard recording layer, thereby reducing a total SUL magnetic field response to the dynamic reversal field approximately to zero at one or more points in the hard recording layer, which reduces side track erasure.
Abstract:
A perpendicular magnetic recording medium having a substrate and a magnetic underlayer on the substrate, the magnetic underlayer having an easy axis of magnetization substantially directed in a radial or transverse direction, and a process for manufacturing the perpendicular magnetic recording medium are disclosed.
Abstract:
Perpendicular magnetic recording media having no, or substantially reduced, Barkhausen noise are manufactured by a method comprising steps of: (a) providing a non-magnetic substrate having a surface; (b) providing the surface of the substrate with a unidirectional texture pattern; (c) forming an underlayer of a soft magnetic material over the unidirectional texture pattern, the layer of soft magnetic material having positive magnetostriction and uniaxial magnetic anisotropy and including a multiplicity of magnetic domains; and (d) forming a magnetic recording layer of a hard magnetic material over the underlayer; wherein the uniaxial magnetic anisotropy of the underlayer of soft magnetic material is sufficiently large to orient the magnetic domains thereof along the axis of the uniaxial magnetic anisotropy and thereby restrict domain wall formation and/or movement, whereby generation of Barkhausen noise in the soft underlayer is suppressed.
Abstract:
A media for perpendicular recording and a method of creating the media is provided. The media includes a hard recording layer and a soft underlayer (SUL). The SUL is composed of at least two anti-ferromagnetically coupled (AFC) sub-underlayers. The sub-underlayers respond to a magnetic field established during dynamic reversal with respective magnetic fields. The sub-underlayers are formed and disposed to differ in one or more magnetic moment, anisotropy, and thickness, so that their respective magnetic fields constructively interfere in one or more points in the hard recording layer, thereby reducing a total SUL magnetic field response to the dynamic reversal field approximately to zero at one or more points in the hard recording layer, which reduces side track erasure.
Abstract:
A magnetic recording medium, the order of layers in which is the substrate, the soft underlayer, the seedlayer, the 1st RuCrx-containing interlayer, the 2nd RuCrx-containing interlayer and the magnetic recording layer with preferably a oxides or nitrides-containing magnetic layer comprising grains, is disclosed. High-chromium ruthenium-chromium alloy used as inter layers significantly enhances coercivity and SMNR preferably due to the improved lattice match between RuCr inter layers and CoPt-based magnetic recording layers, and the surface energy of RuCr layers contributes to the performance improvement with the high-chromium addition into Ru inter layers.