Abstract:
Photovoltaic cells containing electrically conductive particles in a electrode, as well as related components, systems, and methods, are disclosed.
Abstract:
The present invention proposes an organic photovoltaic component, particularly an organic solar cell, whose electrode is implemented as unstructured and is provided with a passivation layer, so that the passivated electrode layer acts functionally as a structured electrode or electrode layer.
Abstract:
A method for producing an organic line detector for applications in the field of computer tomography, includes the following steps: selective etching is carried out on an indium-tin-oxide (ITO) applied to a substrate; two separate ITO strips are formed by the etching; at least one structured mushroom photosensitive resist is applied between the ITO strips; at least one organic perforated conductor is applied to the mushroom photosensitive resist and the ITO strips, only adhering to the ITO strips; at least one organic semiconductor is applied to the layer of the organic perforated conductor, only adhering to the organic perforated conductor and not to the mushroom photosensitive resist; and at least two negative cup-type electrodes are applied to the organic semiconductor, the cup-type electrodes being separate from each other.
Abstract:
The present invention proposes an organic photovoltaic component, particularly an organic solar cell, whose electrode is implemented as unstructured and is provided with a passivation layer, so that the passivated electrode layer acts functionally as a structured electrode or electrode layer.
Abstract:
The invention relates to an organically based photovoltaic element, in particular a solar cell comprising a photovoltaically active layer whose absorption maximum can be shifted into the longer wavelength region and/or whose efficiency can be increased.