摘要:
This invention provides a transistor with an etching stop layer and a manufacturing method thereof. The transistor structure includes a substrate, a crystalline semiconductor layer, an etching stop structure, an ohmic contact layer, a source, a drain, a gate insulating layer, and a gate. The manufacturing method is performed by patterning the ohmic contact layer and the crystalline semiconductor layer at the same time with the same mask; and patterning the ohmic contact layer and the source/drain layer at the same time with another the same mask.
摘要:
This invention provides a transistor with an etching stop layer and a manufacturing method thereof. The transistor structure includes a substrate, a crystalline semiconductor layer, an etching stop structure, an ohmic contact layer, a source, a drain, a gate insulating layer, and a gate. The manufacturing method is performed by patterning the ohmic contact layer and the crystalline semiconductor layer at the same time with the same mask; and patterning the ohmic contact layer and the source/drain layer at the same time with another the same mask.
摘要:
An EEPROM includes a substrate, a first semiconductor layer and a second semiconductor layer formed on the substrate. The first semiconductor layer is isolated from the second semiconductor layer by a trench. A first source and a first drain are located at two opposing sides of the first semiconductor layer. A first dielectric layer is formed on the first semiconductor layer, and a first floating gate is formed on the first dielectric layer. A second source and a second drain are located at two opposing sides of the second semiconductor layer. A second dielectric layer is formed on the second semiconductor layer, and a second floating gate is formed on the second dielectric layer. The first floating gate and the second floating gate are electrically connected.
摘要:
A thin film transistor (TFT) formed on a transparent substrate is provided. The thin film transistor includes a patterned semiconductor layer, a gate insulating layer disposed on the patterned semiconductor layer, a gate electrode disposed on the gate insulating layer, and a patterned light-absorbing layer. The patterned semiconductor layer includes a channel region, and a source region and a drain region disposed on two opposite sides of the channel region in the pattern semiconductor layer. The patterned light-absorbing layer is disposed between the transparent substrate and the patterned semiconductor layer.
摘要:
An EEPROM includes a substrate, a first semiconductor layer and a second semiconductor layer formed on the substrate. The first semiconductor layer is isolated from the second semiconductor layer by a trench. A first source and a first drain are located at two opposing sides of the first semiconductor layer. A first dielectric layer is formed on the first semiconductor layer, and a first floating gate is formed on the first dielectric layer. A second source and a second drain are located at two opposing sides of the second semiconductor layer. A second dielectric layer is formed on the second semiconductor layer, and a second floating gate is formed on the second dielectric layer. The first floating gate and the second floating gate are electrically connected.
摘要:
A semiconductor device and the method for fabricating the same are disclosed. The fabrication method includes forming a PMOS device and an NMOS device on a substrate, wherein the PMOS device includes a first poly-silicon island, a gate dielectric layer covering the first poly-silicon island, and a first gate on the gate dielectric layer. The method of fabrication the PMOS device includes performing a P-type ion implantation process on the first poly-silicon island to form a plurality of P-type heavily doped regions and a plurality of P-type lightly doped regions. The length of the channel region is substantially less than 3 micron, and the length of at least one of the P-type lightly doped regions substantially is 10%-80% of the length of the channel region. The P-type lightly doped regions are used to improve the short channel effect of the PMOS device.
摘要:
An EEPROM includes a substrate, a first semiconductor layer and a second semiconductor layer formed on the substrate. The first semiconductor layer is isolated from the second semiconductor layer by a trench. A first source and a first drain are located at two opposing sides of the first semiconductor layer. A first dielectric layer is formed on the first semiconductor layer, and a first floating gate is formed on the first dielectric layer. A second source and a second drain are located at two opposing sides of the second semiconductor layer. A second dielectric layer is formed on the second semiconductor layer, and a second floating gate is formed on the second dielectric layer. The first floating gate and the second floating gate are electrically connected.
摘要:
An EEPROM includes a substrate, a first semiconductor layer and a second semiconductor layer formed on the substrate. The first semiconductor layer is isolated from the second semiconductor layer by a trench. A first source and a first drain are located at two opposing sides of the first semiconductor layer. A first dielectric layer is formed on the first semiconductor layer, and a first floating gate is formed on the first dielectric layer. A second source and a second drain are located at two opposing sides of the second semiconductor layer. A second dielectric layer is formed on the second semiconductor layer, and a second floating gate is formed on the second dielectric layer. The first floating gate and the second floating gate are electrically connected.
摘要:
A plurality of thin-film transistors are formed on a substrate. An insulating layer and a metal layer are formed on the substrate, the metal layer including a source electrode and a drain electrode connecting to each of the transistors, and a channel region defined between the source electrode and the drain electrode. An organic layer is formed to cover the metal layer and the insulating layer. A transparent conductive layer is formed on the organic layer. Therein the insulating layer is simultaneously solidified when forming the organic layer, thus reducing surface leakage currents of the substrate.