Abstract:
A multimedia playing device includes a central processing unit, a plurality of sensors electrically coupled to the central processing unit, and an output unit electrically coupled to the central processing unit. The plurality of sensors are operated together with the central processing unit, such that after the sensors detect different hand movements of a user, the central processing unit reads and determines the hand movement and transmits related control signals to the output unit according to different hand movements to achieve the effects of using a hand posture to control related functional movements and enhancing the convenience of using the multimedia playing device.
Abstract:
A multimedia playing device includes a central processing unit, a plurality of sensors electrically coupled to the central processing unit, and an output unit electrically coupled to the central processing unit. The plurality of sensors are operated together with the central processing unit, such that after the sensors detect different hand movements of a user, the central processing unit reads and determines the hand movement and transmits related control signals to the output unit according to different hand movements to achieve the effects of using a hand posture to control related functional movements and enhancing the convenience of using the multimedia playing device.
Abstract:
A multimedia playing device includes a central processing unit, a plurality of sensors electrically coupled to the central processing unit, and an output unit electrically coupled to the central processing unit. The plurality of sensors are operated together with the central processing unit, such that after the sensors detect different hand movements of a user, the central processing unit reads and determines the hand movement and transmits related control signals to the output unit according to different hand movements to achieve the effects of using a hand posture to control related functional movements and enhancing the convenience of using the multimedia playing device.
Abstract:
A PCI data accessing system with a read request pipeline and an application method thereof are provided. The PCI data accessing system has a PCI master device, a memory module, and a PCI control device. The PCI master device issues a first read request, and the PCI control device converts the first read request to a second read request divided into a first part and a second part. Each part of the second request requests one line data, i.e. 64 bits data. The memory module stores data requested by the PCI master device. Moreover, there is no latency time between data for the first part and the second part returned from the memory module.
Abstract:
In one embodiment, a node comprises a plurality of interface circuits coupled to a node controller. Each of the plurality of interface circuits is configured to couple to a respective link of a plurality of links. The node controller is configured to select a first link from two or more of the plurality of links to transmit a first packet, wherein the first link is selected responsive to a relative amount of traffic transmitted via each of the two or more of the plurality of links.
Abstract:
In an embodiment, a node comprises a packet scheduler configured to schedule a packet to be transmitted on the link, the packet comprising a command and associated packet data. Coupled to the packet scheduler and configured to transmit the packet on the link, and interface circuit is configured to generate error detection data covering the packet. The interface circuit is configured to transmit the error detection data covering the packet at an end of the packet, and is further configured to insert at least one partial error detection data within the packet. The partial error detection data covers a portion of the packet that precedes the partial error detection data. A receiver is configured to receive the data and forward the data based on partial CRC check.
Abstract:
A peripheral device interface control chip having a cache system therein and a method of synchronization data transmission between the cache system and an external device in a computer system. The cache system and data synchronization method can be applied to the peripheral device interface control chip having a data buffer and a peripheral device interface controller. The data buffer is located inside the control chip for holding data stream read from a memory unit so that data required by the peripheral device is provided. When the data stream is still valid, the data stream is retained. The peripheral device interface controller is installed inside the control chip. The peripheral device interface controller detects if the data stream inside the data buffer includes the data required by the peripheral device and whether the data stream is still valid or not. The peripheral device interface controller also controls the placement of the data stream retrieved from the memory into the data buffer and state transition of the data buffer.
Abstract:
Method and apparatus for arbitrating access to a pci bus by a plurality of functions in a multi-function master. The arbitrating method is performed among the multiple functions of a multi-function master. The arbiter includes a rotating inquiry scheduler (RIS) and a heuristic inquiry initiator (HII). The RIS receives the local inquiry signal from the functional circuit and stores it. According to the local inquiry signal, a bus inquiry signal is generated and sent to the HII, and is sent to the PCI bus to request a use of the PCI bus. If the PCI bus responds a delay transaction termination, the HII can repeatedly send the bus inquiry signal to the PCI bus until the PCI bus grants the privilege to use the PCI bus. The HII then informs the RIS, which arranges the functional circuit to transmit data through the PCI bus.
Abstract:
An imaging apparatus includes an audio/video capture mechanism and an output mechanism movably installed at a side of the audio/video capture mechanism, and the output mechanism includes a first display unit and a second display unit installed on both surfaces of the output mechanism respectively and coupled to the audio/video capture mechanism, such that the imaging apparatus can display a captured image by the first and second display units and allow a photographer to view the content of a captured image while taking the picture of his own, as well as allowing the photographer and a photographed party to simultaneously view the content of a capture image, so as to achieve a more practical photographical effect to cope with different requirements.
Abstract:
An image pickup device includes a main body, an image pickup assembly, and a cover. The image pickup assembly is located in the main body and has an image pickup section and an infrared emitter section. The image pickup section has a lens, a light filter, and a light sensing element. The light filter is located between the lens and the light sensing element to allow visible light and infrared light of a predetermined wavelength to pass therethrough and reach at the light sensing element. The cover is located on the main body to cover the image pickup assembly, and has an image pickup window positioned corresponding to the image pickup section and an emission window positioned corresponding to the infrared emitter section. With these arrangements, the image pickup device can be used to pick up images of an object in a fully dark environment.