Abstract:
Techniques for fabricating metal devices, such as vertical light-emitting diode (VLED) devices, power devices, laser diodes, and vertical cavity surface emitting laser devices, are provided. Devices produced accordingly may benefit from greater yields and enhanced performance over conventional metal devices, such as higher brightness of the light-emitting diode and increased thermal conductivity. Moreover, the invention discloses techniques in the fabrication arts that are applicable to GaN-based electronic devices in cases where there is a high heat dissipation rate of the metal devices that have an original non- (or low) thermally conductive and/or non- (or low) electrically conductive carrier substrate that has been removed.
Abstract:
Systems and methods are disclosed for fabricating a semiconductor light-emitting diode (LED) device by forming an n-doped gallium nitride (n-GaN) layer on the LED device and roughening the surface of the n-GaN layer to extract light from an interior of the LED device.
Abstract:
Techniques for fabricating metal devices, such as vertical light-emitting diode (VLED) devices, power devices, laser diodes, and vertical cavity surface emitting laser devices, are provided. Devices produced accordingly may benefit from greater yields and enhanced performance over conventional metal devices, such as higher brightness of the light-emitting diode and increased thermal conductivity. Moreover, the invention discloses techniques in the fabrication arts that are applicable to GaN-based electronic devices in cases where there is a high heat dissipation rate of the metal devices that have an original non-(or low) thermally conductive and/or non-(or low) electrically conductive carrier substrate that has been removed.
Abstract:
Techniques for fabricating contacts on inverted configuration surfaces of GaN layers of semiconductor devices are provided. An n-doped GaN layer may be formed with a surface exposed by removing a substrate on which the n-doped GaN layer was formed. The crystal structure of such a surface may have a significantly different configuration than the surface of an as-deposited p-doped GaN layer.
Abstract:
A method for the separation of multiple dies during semiconductor fabrication is described. On an upper surface of a semiconductor wafer containing multiple dies, a seed metal layer may be used to grow hard metal layers above it for handling. Metal may be plated above these metal layers everywhere except where a block of stop electroplating (EP) material exists. The stop EP material may be obliterated, and a barrier layer may be formed above the entire remaining structure. The substrate may be removed, and the individual dies may have any desired bonding pads and/or patterned circuitry added to the semiconductor surface. The remerged hard metal after laser cutting and heating should be strong enough for handling. Tape may be added to the wafer, and a breaker may be used to break the dies apart. The resulting structure may be flipped over, and the tape may be expanded to separate the individual dies.