Abstract:
A weed control particle is provided that includes a delivery granule having a surface and a core. A dicarboximide herbicide is adhered to the surface, mixed into the core of the granule, or both. A dinitroaniline herbicide is adhered to the surface, mixed into the core of the granule, or both. A process of weed control includes distributing such particles or two separate types of particles that each have one of the two types of herbicides to a plot around a desired plant. The weed control particles are distributed at a density such that said dicarboximide herbicide is present at between 20% and 80% of full rate for the dicarboximide herbicide and the dinitroaniline is present at between 20% and 70% of full rate for the dinitroaniline herbicide to provide weed control around the desired plant.
Abstract:
A water-dispersible particle is provided that includes organic origin potash in an amount ranging from 5% to 99.9% by weight of the total dry weight of the particle. A binder component is present in an amount from 1% to 95% by weight. The organic origin potash and the binder component on that contact with water causes particle dispersion into more than 100 pieces.A process for making a water-dispersible particle includes mechanical aggregation of the potash into a pellet. A binder component is present in the particle in an amount ranging from 1% to 95% by weight. The potash and the binder component are present in a form such that contact with water causes particle dispersion into more than 100 pieces. The pellet is then dried and ready to be applied.
Abstract:
A particle is provided that includes 5 wt % to 90 wt % of agricultural biomass, combustion residues, biosolids, or a combination thereof. A binder intermixed with the agricultural biomass, combustion residues, biosolids, or a combination thereof retains the mixture in the form of a particle. The resultant particle creates a use for existing waste streams while also improving soil quality. A process of stabilizing agricultural biomass, combustion residues, biosolids, or a combination thereof particles is also provided that includes combining agricultural biomass, combustion residues, biosolids, or a combination thereof with mineral and/or synthetic chemical fragments having a bulk density of greater than about 40 pounds per cubic foot and a sizing of about 100% passing through a 30 mesh screen and about 50% or more passing through a 200 mesh screen. By adding binder, a particle is formed that is deodorized and/or stabilized. Through the choice of binder, the particle can be rendered dispersible to rapidly disintegrate into soil.
Abstract:
Water-dispersible particles are provided that disperse into more than 100 pieces upon contact with water. Particles include from 5% to 99.9% of a nitrogen-containing ingredient bioavailable to a targeted desirable organism and 1% to 95% of a bentonite binder component.Additionally provided is a process for making a water-dispersible particle, the process including the steps of mechanically aggregating particle components into a pellet. Particle components include a bioavailable nitrogen-containing ingredient and a binder, the components being such that a product particle is dispersed into more than 100 pieces upon contact with water. In a further step of a process for making a water-dispersible particle, the pellet is dried to form a particle. Following administration of a described particle, water is allowed to contact the particle, dispersing it into pieces and thereby delivering a nutrient.
Abstract:
A particle is provided that includes 5 wt % to 90 wt % of agricultural biomass, combustion residues, biosolids, or a combination thereof. A binder intermixed with the agricultural biomass, combustion residues, biosolids, or a combination thereof retains the mixture in the form of a particle. The resultant particle creates a use for existing waste streams while also improving soil quality. A process of stabilizing agricultural biomass, combustion residues, biosolids, or a combination thereof particles is also provided that includes combining agricultural biomass, combustion residues, biosolids, or a combination thereof with mineral and/or synthetic chemical fragments having a bulk density of greater than about 40 pounds per cubic foot and a sizing of about 100% passing through a 30 mesh screen and about 50% or more passing through a 200 mesh screen. By adding binder, a particle is formed that is deodorized and/or stabilized. Through the choice of binder, the particle can be rendered dispersible to rapidly disintegrate into soil.
Abstract:
A water-dispersible particle is provided that includes struvite in an amount ranging from 5% to 99.9% by weight of the total dry weight of the particle. A binder component is present in an amount from 1% to 95% by weight. The struvite and the binder component on that contact with water causes particle dispersion into more than 100 pieces. A process for making a water-dispersible particle includes mechanical aggregation of a struvite into a pellet. A binder component is present in the particle in an amount ranging from 1% to 95% by weight. The struvite and the binder component are present in a form such that contact with water causes particle dispersion into more than 100 pieces. The particle is then dried and ready to be applied.
Abstract:
A water-dispersible particle is provided that includes a sulfate or phosphate of potash in an amount ranging from 5% to 99.9% by weight of the total dry weight of the particle. A binder component is present in an amount from 1% to 95% by weight. The sulfate or phosphate of potash and the binder component on that contact with water causes particle dispersion into more than 100 pieces.A process for making a water-dispersible particle includes mechanical aggregation of a sulfate or phosphate of potash into a pellet. A binder component is present in the particle in an amount ranging from 1% to 95% by weight. The sulfate or phosphate of potash and the binder component are present in a form such that contact with water causes particle dispersion into more than 100 pieces. The pellet is then dried and ready to be applied.
Abstract:
A water-dispersible particle is provided that includes a sulfate or phosphate of potash in an amount ranging from 5% to 99.9% by weight of the total dry weight of the particle. A binder component is present in an amount from 1% to 95% by weight. The sulfate or phosphate of potash and the binder component on that contact with water causes particle dispersion into more than 100 pieces.A process for making a water-dispersible particle includes mechanical aggregation of a sulfate or phosphate of potash into a pellet. A binder component is present in the particle in an amount ranging from 1% to 95% by weight. The sulfate or phosphate of potash and the binder component are present in a form such that contact with water causes particle dispersion into more than 100 pieces. The pellet is then dried and ready to be applied.
Abstract:
A water-dispersible particle is provided that includes struvite in an amount ranging from 5% to 99.9% by weight of the total dry weight of the particle. A binder component is present in an amount from 1% to 95% by weight. The struvite and the binder component on that contact with water causes particle dispersion into more than 100 pieces. A process for making a water-dispersible particle includes mechanical aggregation of a struvite into a pellet. A binder component is present in the particle in an amount ranging from 1% to 95% by weight. The struvite and the binder component are present in a form such that contact with water causes particle dispersion into more than 100 pieces. The particle is then dried and ready to be applied.
Abstract:
A water-dispersible particle is provided that includes organic origin potash in an amount ranging from 5% to 99.9% by weight of the total dry weight of the particle. A binder component is present in an amount from 1% to 95% by weight. The organic origin potash and the binder component on that contact with water causes particle dispersion into more than 100 pieces.A process for making a water-dispersible particle includes mechanical aggregation of the potash into a pellet. A binder component is present in the particle in an amount ranging from 1% to 95% by weight. The potash and the binder component are present in a form such that contact with water causes particle dispersion into more than 100 pieces. The pellet is then dried and ready to be applied.