Abstract:
A direct-sequence spread spectrum (DSSS) receiver may be operable to process signal samples in frequency domain utilizing a prime factor fast Fourier transform (FFT) circuit and a pseudorandom noise (PRN) code. The DSSS receiver may be operable to transform the signal samples into FFT signal samples using the prime factor FFT circuit, transform the PRN code into a FFT PRN code using the prime factor FFT circuit and multiply the FFT signal samples with the FFT PRN code using the prime factor FFT circuit. The DSSS receiver may be operable to inversely transform the multiplied FFT signal samples into correlated signal samples using a prime factor inverse FFT (IFFT) implemented by the prime factor FFT circuit. The prime factor FFT circuit may comprise a prime length FFT core, a FFT memory, a register bank, a switch, a multiplier and a FFT controller.
Abstract:
A receiver capable of receiving a spread spectrum signal and having a crosscorrelator that enables a carrier wave (CW) jamming to be identified, tracked, replicated and removed from the received spread spectrum signal after demodulation of a weak signal has occurred.
Abstract:
Generic SATPS receivers and methods for configuring generic SATPS receivers that include a plurality of outputs are provided. These configurable SATPS receivers are adapted to be utilized in at least one of a plurality of particular SATPS receiver applications, and can also include a plurality of input paths, and a means for generating selected ones of the plurality of possible outputs. Selected ones of the plurality of outputs are enabled/disabled based on at least one requirement of the particular receiver application to configure or program the generic SATPS receiver to function as a SATPS receiver used for a particular SATPS receiver application or operating environment. The selected ones of the plurality of outputs can be defined by and can be those utilized by the particular SATPS receiver application or operating environment. Thus, SATPS receivers are provided that can be used in multiple applications, that can accept multiple types of assistance data, and that have multiple types of outputs depending on the application and/or desires of the user. The SATPS receiver can be implemented in SATPS systems that include at least one satellite that provides SATPS information, a generic SATPS receiver, and a remote computer.
Abstract:
An integrated global navigation satellite system (GNSS) receiver may be operable to decompose GNSS IF signals associated with GPS satellites and/or GLONASS satellites into a constituent narrowband GPS data stream and/or a plurality of constituent narrowband GLONASS data streams utilizing, for example, a GPS IF tuner and/or one or more GLONASS IF tuners. The narrowband GLONASS data streams and/or the narrowband GPS data stream may be processed at reduced sampling rates utilizing a shared sample memory in the integrated GNSS receiver. The narrowband GLONASS data streams and/or the narrowband GPS data stream may be stored in allocated sections of the shared sample memory. The stored narrowband GLONASS data streams and/or the stored narrowband GPS data stream may be processed using a correlation such as a fast Fourier transform (FFT) correlation.
Abstract:
A system and method are provided for determining a position of a Global Positioning System (GPS) receiver prior to bit and frame synchronization. As such, the time-to-first-fix is substantially reduced. More specifically, pseudoranges to five GPS satellites are measured by correlating locally generated Pseudo-Random Number (PRN) codes with signals received from the GPS satellites. After correlation, the pseudorange measurements are correct with an unknown integer number of milliseconds error, which is different for each of the pseudorange measurements. Using the measurements of the pseudoranges and a mathematical model where each of the pseudorange measurements is forced to have a common channel time error, the user position and the common channel time error are determined prior to bit and frame synchronization.
Abstract:
A CDMA coded, spread spectrum radio signal containing a strong signal and a weak signal is received, and the interference of the strong signal with the weak signal is computed to enhance the ability to track the weak signal. The codes modulating both signals are known, and the weak signal can be predicted. The interference of the strong signal is calculated as the product of the amplitude of the strong signal and the predicted crosscorrelation of the strong signal with the weak signal. The strong signal may be measured, predicted, or acquired through a combination of both methods. The crosscorrelation may be predicted for a range of weak signal values, and the weak signal selected as the prediction producing the greatest received power.
Abstract:
An integrated global navigation satellite system (GNSS) receiver may be operable to decompose GNSS IF signals associated with GPS satellites and/or GLONASS satellites into a constituent narrowband GPS data stream and/or a plurality of constituent narrowband GLONASS data streams utilizing, for example, a GPS IF tuner and/or one or more GLONASS IF tuners. The narrowband GLONASS data streams and/or the narrowband GPS data stream may be processed at reduced sampling rates utilizing a shared sample memory in the integrated GNSS receiver. The narrowband GLONASS data streams and/or the narrowband GPS data stream may be stored in allocated sections of the shared sample memory. The stored narrowband GLONASS data streams and/or the stored narrowband GPS data stream may be processed using a correlation such as a fast Fourier transform (FFT) correlation.
Abstract:
A two part signal acquisition process includes a parallel signal detection process and signal verification/false alarm rejection process. A massively parallel architecture of acquisition correlators search a large region of the time-frequency uncertainty during the parallel signal detection process to identify the most likely detections for each search dwell. Concurrent with the parallel signal detection process performed by the acquisition correlators, the current list of most likely detections is examined with additional search dwells in the verification/false alarm rejection process. The verification/false alarm rejection process is performed by a plurality of independent correlators or tracking channels. Under software control, the tracking channels perform repeated dwells on the most likely detections until they can be dismissed as false alarms or verified as the desired signal.
Abstract:
A two part signal acquisition process includes a parallel signal detection process and signal verification/false alarm rejection process. A massively parallel architecture of acquisition correlators search a large region of the time-frequency uncertainty during the parallel signal detection process to identify the most likely detections for each search dwell. Concurrent with the parallel signal detection process performed by the acquisition correlators, the current list of most likely detections is examined with additional search dwells in the verification/false alarm rejection process. The verification/false alarm rejection process is performed by a plurality of independent correlators or tracking channels. Under software control, the tracking channels perform repeated dwells on the most likely detections until they can be dismissed as false alarms or verified as the desired signal.
Abstract:
A communication system includes an optical network, a first POP, and a second POP. The first POP receives user communications from a first user system and transfers the user communications to the optical network over a first optical wavelength. The optical network transfers first user communications to the second POP over the first optical wavelength. The second POP transfers the user communications to a second user system. Responsive to a problem with the transfer of the user communications over the first optical wavelength, the first POP transfers the user communications to the optical network over a second optical wavelength, and the optical network transfers the user communications to the second POP over the second optical wavelength.