Abstract:
Apparatus for irrigating an electrode of a catheter are disclosed. Among other things, a catheter is disclosed that comprises a shaft portion including a fluid passage to conduct fluid, an electrode coupled to a distal end of the shaft portion, and a handle portion coupled to a proximal end of the shaft portion. A portion of the fluid passage defines an opening in the shaft portion. The opening is constructed and arranged such that when fluid is conducted through the fluid passage, at least some of the fluid will contact the electrode after passing through the opening in the shaft portion.
Abstract:
Apparatus for irrigating an electrode of a catheter are disclosed. Among other things, a catheter is disclosed that comprises a shaft portion including a fluid passage to conduct fluid, an electrode coupled to a distal end of the shaft portion, and a handle portion coupled to a proximal end of the shaft portion. A portion of the fluid passage defines an opening in the shaft portion. The opening is constructed and arranged such that when fluid is conducted through the fluid passage, at least some of the fluid will contact the electrode after passing through the opening in the shaft portion.
Abstract:
Embodiments described herein relate to methods of using a catheter having a braided conductive member. One embodiment relates to a method for treating a condition of a patient that involves contacting an exterior wall of a blood vessel with the braided conductive member. Another embodiment relates to a method that involves contacting a wall of a blood vessel with the braided conductive member and controlling energy delivery to the braided conductive member based on at least one sensed temperature.
Abstract:
The present invention encompasses apparatus and methods for mapping electrical activity within the heart. The present invention also encompasses methods and apparatus for creating lesions in the heart tissue (ablating) to create a region of necrotic tissue which serves to disable the propagation of errant electrical impulses caused by an arrhythmia.
Abstract:
The present invention encompasses apparatus and methods for mapping electrical activity within the heart. The present invention also encompasses methods and apparatus for creating lesions in the heart tissue (ablating) to create a region of necrotic tissue which serves to disable the propagation of errant electrical impulses caused by an arrhythmia.
Abstract:
Methods and apparatuses for manipulating an elongated flexible shaft of a catheter provide case and reliability of positioning electrodes against or near tissue. Dual-bend flexible distal tips (30) may be used in combination with flat wires. In some embodiments, flat wires which are free to rotate upon initial bending of shaft segments are employed. In some embodiments, one or more transition segments (48) are used to relocate the satellite lumen-to-main lumen transition of pull wires (42, 40) away from a change in shaft stiffness.
Abstract:
Methods and apparatuses for manipulating an elongated flexible shaft of a catheter provide case and reliability of positioning electrodes against or near tissue. Dual-bend flexible distal tips (30) may be used in combination with flat wires. In some embodiments, flat wires which are free to rotate upon initial bending of shaft segments are employed. In some embodiments, one or more transition segments (48) are used to relocate the satellite lumen-to-main lumen transition of pull wires (42, 40) away from a change in shaft stiffness.
Abstract:
A handle for use with a catheter, the handle including a housing, a cable, and a guide. The housing has a proximal end, a distal end, and a longitudinal axis that extends from the proximal end of the housing to the distal end of the housing. The cable is disposed in the housing and extends through the proximal end of the housing. A portion of the cable that is disposed in the housing is movable, under compression, in a first direction that is substantially aligned with the longitudinal axis of the housing. The guide is disposed in the housing and is adapted to prevent the portion of the cable from moving in a second direction that is transverse to the first direction when the portion of the cable is moved in the first direction. The handle is suitable for use with an electrophysiology catheter having an elongated shaft.
Abstract:
An electrophysiology catheter and method of use for mapping and ablation procedures. The catheter includes a braided conductive member at its distal end that can be radially expanded. The catheter can be used in endocardial and epicardial mapping and ablation procedures.
Abstract:
Catheters for mapping and/or ablation are disclosed. In one embodiment, the catheter comprises a handle, a flexible shaft, a tip assembly, and a cable. The handle includes an actuator and is attached, at its distal end, to the proximal end of the flexible shaft. The flexible shaft has a longitudinal axis that extends along a length of the shaft. The proximal end of the tip assembly is attached to the distal end of the shaft and includes a fixed bend of approximatley ninety degrees relative to the longitudinal axis of the shaft. The distal end of the tip assembly includes an arcuate curve having a diameter. The arcuate curve is oriented in a plane that is approximatley perpendicular to the longitudinal axis of the shaft. The cable is attached to the actuator and the distal end of the tip assembly, and extends through the shaft. The cable is adapted to change the diameter of the arcuate curve in response to movement of the actuator.