Abstract:
Apparatus for irrigating an electrode of a catheter are disclosed. Among other things, a catheter is disclosed that comprises a shaft portion including a fluid passage to conduct fluid, an electrode coupled to a distal end of the shaft portion, and a handle portion coupled to a proximal end of the shaft portion. A portion of the fluid passage defines an opening in the shaft portion. The opening is constructed and arranged such that when fluid is conducted through the fluid passage, at least some of the fluid will contact the electrode after passing through the opening in the shaft portion.
Abstract:
Apparatus for irrigating an electrode of a catheter are disclosed. Among other things, a catheter is disclosed that comprises a shaft portion including a fluid passage to conduct fluid, an electrode coupled to a distal end of the shaft portion, and a handle portion coupled to a proximal end of the shaft portion. A portion of the fluid passage defines an opening in the shaft portion. The opening is constructed and arranged such that when fluid is conducted through the fluid passage, at least some of the fluid will contact the electrode after passing through the opening in the shaft portion.
Abstract:
A catheter includes a pull wire which extends through two different lumen and attaches to the distal end of the catheter at an off-axis location. By tensioning the pull wire, the catheter can assume various complex curves, depending on the respective lumen through which the pull wire passes.
Abstract:
A catheter includes a pull wire which extends through two different lumen and attaches to the distal end of the catheter at an off-axis location. By tensioning the pull wire, the catheter can assume various complex curves, depending on the respective lumen through which the pull wire passes.
Abstract:
The present invention encompasses apparatus and methods for mapping electrical activity within the heart. The present invention also encompasses methods and apparatus for creating lesions in the heart tissue (ablating) to create a region of necrotic tissue which serves to disable the propagation of errant electrical impulses caused by an arrhythmia.
Abstract:
Methods and apparatuses for manipulating an elongated flexible shaft of a catheter provide case and reliability of positioning electrodes against or near tissue. Dual-bend flexible distal tips (30) may be used in combination with flat wires. In some embodiments, flat wires which are free to rotate upon initial bending of shaft segments are employed. In some embodiments, one or more transition segments (48) are used to relocate the satellite lumen-to-main lumen transition of pull wires (42, 40) away from a change in shaft stiffness.
Abstract:
Embodiments described herein relate to methods of using a catheter having a braided conductive member. One embodiment relates to a method for treating a condition of a patient that involves contacting an exterior wall of a blood vessel with the braided conductive member. Another embodiment relates to a method that involves contacting a wall of a blood vessel with the braided conductive member and controlling energy delivery to the braided conductive member based on at least one sensed temperature.
Abstract:
The present invention encompasses apparatus and methods for mapping electrical activity within the heart. The present invention also encompasses methods and apparatus for creating lesions in the heart tissue (ablating) to create a region of necrotic tissue which serves to disable the propagation of errant electrical impulses caused by an arrhythmia.
Abstract:
Methods and apparatuses for manipulating an elongated flexible shaft of a catheter provide ease and reliability of positioning electrodes against or near tissue. Dual-bend flexible distal tips may be used in combination with flat wires. In some embodiments, flat wires which are free to rotate upon initial bending of shaft segments are employed. In some embodiments, one or more transition segments are used to relocate the satellite lumen-to-main lumen transition of pull wires away from a change in shaft stiffness.
Abstract:
Embodiments described herein relate to methods of using a catheter having a braided conductive member. One embodiment relates to a method for treating a condition of a patient that involves contacting an exterior wall of a blood vessel with the braided conductive member. Another embodiment relates to a method that involves contacting a wall of a blood vessel with the braided conductive member and controlling energy delivery to the braided conductive member based on at least one sensed temperature.