Abstract:
A semiconductor device and a method of forming the same are provided. A semiconductor device may comprise a semiconductor substrate including a main surface configured to define a groove, a trench, and a cavity sequentially disposed downward from a given region of the main surface and open toward the main surface.
Abstract:
In a method of forming a conductive layer structure and a method of manufacturing a recess channel transistor, a first insulating layer and a first conductive layer are sequentially formed on a substrate having a first region a second region and the substrate is exposed in a recess-forming area in the first region. A recess is formed in the recess-forming-area by etching the exposed region of the substrate. A second insulating layer is conformally formed on a sidewall and a bottom of the recess. A second conductive layer pattern is formed on the second insulating layer to fill up a portion of the recess. A spacer is formed on the second conductive layer pattern and on the second insulating layer on the sidewall of the recess. A third conductive layer pattern is formed on the second conductive layer pattern and the spacer to fill up the recess.
Abstract:
In a method of forming a conductive layer structure and a method of manufacturing a recess channel transistor, a first insulating layer and a first conductive layer are sequentially formed on a substrate having a first region a second region and the substrate is exposed in a recess-forming area in the first region. A recess is formed in the recess-forming-area by etching the exposed region of the substrate. A second insulating layer is conformally formed on a sidewall and a bottom of the recess. A second conductive layer pattern is formed on the second insulating layer to fill up a portion of the recess. A spacer is formed on the second conductive layer pattern and on the second insulating layer on the sidewall of the recess. A third conductive layer pattern is formed on the second conductive layer pattern and the spacer to fill up the recess.
Abstract:
Provided is an etching system and a method of controlling etching process condition. The etching system includes a light source that irradiates incident light into a target wafer, a light intensity measuring unit that measures light intensity according to the wavelength of interference light generated by interference between reflected light beams from the target wafer, a signal processor that detects a time point at which an extreme value in the intensity is generated when the intensity of interference light varies according to the wavelength, and a controller that compares the extreme value generating time point detected from the signal processor with a reference time point corresponding to the extreme value generating time point and controls a process condition according to the comparison result.
Abstract:
A semiconductor device includes a switching device disposed on a substrate. A buffer electrode pattern is disposed on the switching device. The buffer electrode pattern includes a first region having a first vertical thickness, and a second region having a second vertical thickness smaller than the first vertical thickness. A lower electrode pattern is disposed on the first region of the buffer electrode pattern. A trim insulating pattern is disposed on the second region of the buffer electrode pattern. A variable resistive pattern is disposed on the lower electrode pattern.
Abstract:
A semiconductor device includes a switching device disposed on a substrate. A buffer electrode pattern is disposed on the switching device. The buffer electrode pattern includes a first region having a first vertical thickness, and a second region having a second vertical thickness smaller than the first vertical thickness. A lower electrode pattern is disposed on the first region of the buffer electrode pattern. A trim insulating pattern is disposed on the second region of the buffer electrode pattern. A variable resistive pattern is disposed on the lower electrode pattern.
Abstract:
Provided is an etching system and a method of controlling etching process condition. The etching system includes a light source that irradiates incident light into a target wafer, a light intensity measuring unit that measures light intensity according to the wavelength of interference light generated by interference between reflected light beams from the target wafer, a signal processor that detects a time point at which an extreme value in the intensity is generated when the intensity of interference light varies according to the wavelength, and a controller that compares the extreme value generating time point detected from the signal processor with a reference time point corresponding to the extreme value generating time point and controls a process condition according to the comparison result.