Abstract:
A reflective mask inspection system comprises a short wavelength radiation source for irradiating a reflective mask. A detector system detects the short wavelength radiation reflected from the reflective mask and a controller compares reflectance images of the reflective mask from the detector to characterize the mask. The system analyzes the spatially resolved reflectance characteristics of the substrate from different angles with respect to normal to the substrate and/or at different angles of rotation of the substrate. This information can be used to then analyze the mask for buried defects and then characterize those defects. This technique improves over current systems that rely on atomic force microscopes, which can only provide surface information.
Abstract:
A method of correcting a critical dimension (CD) variation in extreme ultraviolet (EUV) photolithography includes mapping the CD variation of a wafer exposure field formed by a photolithography system that includes an EUV photolithography photomask. Parameters of a treatment to produce a change in reflectance at a working wavelength of EUV radiation in a region of a reflective multilayer of the photomask are determined, the change in reflectance being calculated to correct the mapped CD variation. A treatment beam is directed to the region. The region is treated with the beam in accordance with the determined parameters.
Abstract:
A method of correcting a critical dimension (CD) variation in extreme ultraviolet (EUV) photolithography includes mapping the CD variation of a wafer exposure field formed by a photolithography system that includes an EUV photolithography photomask. Parameters of a treatment to produce a change in reflectance at a working wavelength of EUV radiation in a region of a reflective multilayer of the photomask are determined, the change in reflectance being calculated to correct the mapped CD variation. A treatment beam is directed to the region. The region is treated with the beam in accordance with the determined parameters.
Abstract:
A method of correcting a critical dimension (CD) variation in extreme ultraviolet (EUV) photolithography includes mapping the CD variation of a wafer exposure field formed by a photolithography system that includes an EUV photolithography photomask. Parameters of a treatment to produce a change in reflectance at a working wavelength of EUV radiation in a region of a reflective multilayer of the photomask are determined, the change in reflectance being calculated to correct the mapped CD variation. A treatment beam is directed to the region. The region is treated with the beam in accordance with the determined parameters.
Abstract:
A reflective mask inspection system comprises a short wavelength radiation source for irradiating a reflective mask. A detector system detects the short wavelength radiation reflected from the reflective mask and a controller compares reflectance images of the reflective mask from the detector to characterize the mask. The system analyzes the spatially resolved reflectance characteristics of the substrate from different angles with respect to normal to the substrate and/or at different angles of rotation of the substrate. This information can be used to then analyze the mask for buried defects and then characterize those defects. This technique improves over current systems that rely on atomic force microscopes, which can only provide surface information.