Abstract:
Exemplary apparatus and optical systems for forward and side view apparatus are described. These apparatus include a light focusing element, a grating element inclined with respect to the optical axis of the apparatus, and a transparent element. The transparent element has a proximal surface in contact with the grating element and an inclined distal surface. Such apparatus can be sued as spectrally encoded endoscopy (SEE) probes.
Abstract:
Exemplary apparatus, systems, methods of making, and methods of using a configuration in an optical arrangement for forward viewing spectrally encoded endoscopy (SEE) probe can be provided. For example, the probe can comprise a light focusing component, a light guiding component, a light reflecting component, and a grating component.
Abstract:
Gradient index lenses, or GRIN lenses, are useful for collimating light from a waveguide and reducing loss when coupling two fibers or coupling the fiber to other optical components. There is provided herein a method to align a GRIN lens to the distal end of an optical fiber with precise lateral alignment. The alignment occurs by: (1) rotating the fiber with respect to the lens so that the fiber is parallel with the lens, such that a light is transmitted through the fiber and then through the lens, and (2) translating the fiber laterally with respect to the lens based on the position of a circle pattern that appears on the screen after the distal end of the lens. The transmitted light is centered in the circle pattern for centered alignment or positioned at calculate distance from the center of the circle pattern for off-axis alignment.
Abstract:
Exemplary apparatus and optical systems for forward and side view apparatus are described. These apparatus include a light focusing element, a grating element inclined with respect to the optical axis of the apparatus, and a transparent element. The transparent element has a proximal surface in contact with the grating element and an inclined distal surface. Such apparatus can be used as spectrally encoded endoscopy (SEE) probes.
Abstract:
The present disclosure provides apparatuses and methods for color imaging and an increased field of view using spectrally encoded endoscopy techniques. At least one of the apparatuses includes an illumination unit having two or more spectrally dispersive gratings positioned, for example, on different planes or on the same plane but having grating vectors at an angle to each other such that bands of spectrally dispersed light propagating from the gratings propagate on different planes.
Abstract:
The present invention relates generally to apparatus and methods for endoscopy which includes a probe, a first and a second optical fiber to guide light, a third optical fiber to capture light; and a switch configured to operate the first optical fiber and second optical fiber. Light dispersed by the first optical fiber at least partially overlaps light dispersed by the second optical.
Abstract:
The present disclosure provides apparatuses and methods for color imaging and an increased field of view using spectrally encoded endoscopy techniques. At least one of the apparatuses includes an illumination unit having two or more spectrally dispersive gratings positioned, for example, on different planes or on the same plane but having grating vectors at an angle to each other such that bands of spectrally dispersed light propagating from the gratings propagate on different planes.
Abstract:
Gradient index lenses, or GRIN lenses, are useful for collimating light from a waveguide and reducing loss when coupling two fibers or coupling the fiber to other optical components. There is provided herein a method to align a GRIN lens to the distal end of an optical fiber with precise lateral alignment. The alignment occurs by: (1) rotating the fiber with respect to the lens so that the fiber is parallel with the lens, such that a light is transmitted through the fiber and then through the lens, and (2) translating the fiber laterally with respect to the lens based on the position of a circle pattern that appears on the screen after the distal end of the lens. The transmitted light is centered in the circle pattern for centered alignment or positioned at calculate distance from the center of the circle pattern for off-axis alignment.
Abstract:
Exemplary apparatus, systems, methods of making, and methods of using a configuration in an optical arrangement for forward viewing spectrally encoded endoscopy (SEE) probe can be provided. For example, the probe can comprise a light focusing component, a light guiding component, a light reflecting component, and a grating component.