Abstract:
Methods of rapid distinction between growing cells and debris, which determine a time-lapse movie of specimen images, track features of each entity, and categorize each entity as growing cells or debris.
Abstract:
A device and method for performing fluorescence imaging with digitally time reversed ultrasound encoded light, using a source of ultrasound waves, a coherent light source, a digital optical phase conjugation (DOPC) device comprising a camera and a spatial light modulator (SLM), a detector of fluorescence, and one or more computers, to obtain an output that at least approximates an interaction between a complete time reversed field, of all of the encoded light's fields, and the scattering medium.
Abstract:
Methods of rapid distinction between growing cells and debris, which determine a time-lapse movie of specimen images, track features of each entity, and categorize each entity as growing cells or debris.
Abstract:
A method and apparatus for irradiating a scattering medium with increased resolution. The method includes transmitting EM radiation from an Electromagnetic (EM) radiation source to a target inside a scattering medium, wherein the target encodes the EM radiation with a variance structure to form encoded EM radiation; measuring, in a detector, transmitted EM radiation comprising at least a portion of the encoded EM radiation transmitted through and exiting the scattering medium; decoding the transmitted EM radiation, comprising EM fields, in a computer, comprising selecting one or more of the EM fields having the variance structure; and irradiating the scattering medium with time reversed EM radiation from a spatial light modulator (SLM), the time reversed EM radiation generated from time reversing the EM fields having the variance structure, thereby forming a focus of the time reversed EM radiation in the scattering medium with the increased resolution.
Abstract:
A method and apparatus for irradiating a scattering medium with increased resolution. The method includes transmitting EM radiation from an Electromagnetic (EM) radiation source to a target inside a scattering medium, wherein the target encodes the EM radiation with a variance structure to form encoded EM radiation; measuring, in a detector, transmitted EM radiation comprising at least a portion of the encoded EM radiation transmitted through and exiting the scattering medium; decoding the transmitted EM radiation, comprising EM fields, in a computer, comprising selecting one or more of the EM fields having the variance structure; and irradiating the scattering medium with time reversed EM radiation from a spatial light modulator (SLM), the time reversed EM radiation generated from time reversing the EM fields having the variance structure, thereby forming a focus of the time reversed EM radiation in the scattering medium with the increased resolution.