Abstract:
A Raman spectroscopy system is provided. The spectroscopy system includes an optical switch including a pump inlet, a return outlet, a plurality of pump outlets, and a plurality of return inlets. The spectroscopy system includes a plurality of radiation sources optically coupled to the pump inlet of the optical switch, and a detector optically coupled to the return outlet of the optical switch. The spectroscopy system further includes a plurality of probes, each probe optically connected to at least one of the plurality of pump outlets of the optical switch by at least one excitation fiber and optically coupled to one of the return inlets of the optical switch by at least one emission fiber.
Abstract:
A portable hyperspectral imager. The imager is modular and may include a hyperspectral camera and a removably-coupled mobile display module. The hyperspectral camera may include an Offner spectrometer. The mobile display module may be adapted to receive data from the hyperspectral camera and may include an internal camera. The mobile display module may include a cell phone or a tablet computer. The mobile display module may be integrally attached to the hyperspectral camera. The integral attachment may include a data link or USB connection. The length of the data link or USB connection may be less than 6 inches and the imager may weigh less than one pound. The imager may include a battery module or a scanning optical module.
Abstract:
A hyperspectral imaging system, a monolithic Offner spectrometer, and two methods for manufacturing the monolithic Offner spectrometer are described herein. In one embodiment, the monolithic Offner spectrometer comprises a transmissive material which has: (1) an entrance surface which has an opaque material applied thereto, where the opaque material has a portion removed therefrom which forms a slit; (2) a first surface which has a first reflective coating applied thereto to form a first mirror; (3) a second surface which has a second reflective coating applied thereto to form a diffraction grating; (4) a third surface which has a third reflective coating applied thereto to form a second mirror; and (5) an exit surface.
Abstract:
A hyperspectral imaging system and a method are described herein for providing a hyperspectral image of an area of a remote object (e.g., scene of interest). In one aspect, the hyperspectral imaging system includes at least one optic, a rotatable disk (which has at least one spiral slit formed therein), a spectrometer, a two-dimensional image sensor, and a controller. In another aspect, the hyperspectral imaging system includes at least one optic, a rotatable disk (which has multiple straight slits formed therein), a spectrometer, a two-dimensional image sensor, and a controller. In yet another aspect, the hyperspectral imaging system includes at least one optic, a rotatable drum (which has a plurality of slits formed on the outer surface thereof and a fold mirror located therein), a spectrometer, a two-dimensional image sensor, and a controller.
Abstract:
A hyperspectral imaging system and a method are described herein for providing a hyperspectral image of an area of a remote object (e.g., scene of interest). In one aspect, the hyperspectral imaging system includes at least one optic, a rotatable disk (which has at least one spiral slit formed therein), a spectrometer, a two-dimensional image sensor, and a controller. In another aspect, the hyperspectral imaging system includes at least one optic, a rotatable disk (which has multiple straight slits formed therein), a spectrometer, a two-dimensional image sensor, and a controller. In yet another aspect, the hyperspectral imaging system includes at least one optic, a rotatable drum (which has a plurality of slits formed on the outer surface thereof and a fold mirror located therein), a spectrometer, a two-dimensional image sensor, and a controller.
Abstract:
A hyperspectral imaging system and a method are described herein for providing a hyperspectral image of an area of a remote object (e.g., scene of interest). In one aspect, the hyperspectral imaging system includes at least one optic, a rotatable disk (which has at least one spiral slit formed therein), a spectrometer, a two-dimensional image sensor, and a controller. In another aspect, the hyperspectral imaging system includes at least one optic, a rotatable disk (which has multiple straight slits formed therein), a spectrometer, a two-dimensional image sensor, and a controller. In yet another aspect, the hyperspectral imaging system includes at least one optic, a rotatable drum (which has a plurality of slits formed on the outer surface thereof and a fold mirror located therein), a spectrometer, a two-dimensional image sensor, and a controller.
Abstract:
A hyperspectral imaging system, a monolithic Offner spectrometer, and two methods for manufacturing the monolithic Offner spectrometer are described herein. In one embodiment, the monolithic Offner spectrometer comprises a transmissive material which has: (1) an entrance surface which has an opaque material applied thereto, where the opaque material has a portion removed therefrom which forms a slit; (2) a first surface which has a first reflective coating applied thereto to form a first mirror; (3) a second surface which has a second reflective coating applied thereto to form a diffraction grating; (4) a third surface which has a third reflective coating applied thereto to form a second mirror; and (5) an exit surface.
Abstract:
Methods, systems, devices, and apparatuses are described. A variable diffuser pattern (VDP) may be applied to a substrate and configured to diffuse light from a light source (e.g., a light emitting diode (LED)), where the diffused light may have luminance uniformity and color uniformity measured at various distances from the light source. The VDP may include two or more different materials (e.g., different nanoparticle inks), and each material may have unique spectral reflectance and transmittance properties. For example, a first material may produce relatively more backscatter in red light wavelengths (e.g., as compared to blue and green light wavelengths), and a second material may produce relatively increased backscatter in blue light wavelengths (e.g., as compared to red and green light wavelengths). The VDP including the first and the second material may provide controlled scattering of light from the light source, resulting in uniform luminance and color of the scattered light.
Abstract:
An optical imaging system (e.g., hyperspectral imaging system) is described herein which includes imaging optics, an uni-axial homogenizer (including a rectangular cross-section light pipe and an astigmatic paraxial optic), and a detector. The uni-axial homogenizer is configured to preserve imaging along one axis while homogenizing (removing all image information) along a second perpendicular axis. In one embodiment, the uni-axial homogenizer is utilized in a spectrograph of a hyperspectral imaging system where the rectangular cross-section light pipe replaces the entrance slit of the spectrograph and the astigmatic paraxial optic is built into the design of the spectrometer's optics.
Abstract:
An optical imaging system (e.g., hyperspectral imaging system) is described herein which includes imaging optics, an uni-axial homogenizer (including a rectangular cross-section light pipe and an astigmatic paraxial optic), and a detector. The uni-axial homogenizer is configured to preserve imaging along one axis while homogenizing (removing all image information) along a second perpendicular axis. In one embodiment, the uni-axial homogenizer is utilized in a spectrograph of a hyperspectral imaging system where the rectangular cross-section light pipe replaces the entrance slit of the spectrograph and the astigmatic paraxial optic is built into the design of the spectrometer's optics.