Abstract:
A fluid control valve includes: a valve main body including an inlet port and an outlet port, each being formed on opposite side surfaces; and a mounting plate attached to a lower end of the valve main body; wherein the valve main body has side surfaces located perpendicular to the opposite side surfaces and formed with locking protrusions, the mounting plate is formed with locking arms each extending from an upper end of the mounting plate, the locking arms each having a locking pawl facing and engaging with the protrusion, the valve main body is formed with an annular rib about an central axis on the lower end of the valve main body, and the upper end of the mounting plate is formed with a press-fit rib including a press-fit portion press-fitted in a wall surface of the annular rib.
Abstract:
A fluid control device manifold includes a first body, a second body, and a connection part configured to interpose a seal member between the first and second bodies and allow a connecting tool to engage with engagement surfaces of the bodies. When a load is applied to the engagement surfaces to draw the first and second bodies close to each other, the seal member is press-fitted into the bodies. This press-fitted state is held by a clamp. One or both of the first and second bodies are internally provided with a plurality of the engagement surfaces extending in a nearly perpendicular direction to a drawing direction.
Abstract:
In a connected-part seal structure configured to couple a first connected part and a second connected part through a seal member, the taper angles of first and second inner pressure-contact tapered parts provided in the seal member are smaller than the taper angles of first and second inner tapered parts provided in the first and second connected parts. Thus, a pressure-contact force of first and second inside tapered pressure-contact allowances are larger as the inside tapered pressure-contact allowances are located closer to base end parts of first and second annular protrusions.
Abstract:
A fluid-device connecting structure includes a first fluid device having a first connection part, a second fluid device having a second connection part, an annular seal member to connect the first and second connection parts, and a coupling member to keep the first and second connection parts in a connected state. The coupling member includes a first coupling segment and a second coupling segment, each including at one end a first hinge part or a second hinge part. The first and second connection parts each have a cylindrical outer shape. The first coupling segment has a U-like shape having an opening and surrounds the first and second connection parts over a range more than 180 degrees of an entire circumference of each of the first and second connection parts.
Abstract:
The present invention relates to a tube with coupling according to which liquid leakage and the like can be suppressed as much as possible when couplings are connected. A tube with coupling (10) according to the present invention is a tube with coupling (10) obtained by forming a coupling (30) on a leading end portion (22) of a tube (20) through injection molding, and the leading end portion (22) of the tube (20) is arranged at a position set back from a leading end portion (32) of the coupling (30), at least a portion of the leading end portion (22) of the tube (20) being covered by the coupling (30). It is desirable that a flange (36) is provided so as to protrude outward at a position set back from the leading end portion (32) of the coupling (30) and the leading end portion (22) of the tube (20) is arranged at a position set further back from the flange (36).
Abstract:
A fluid control device manifold includes a first body, a second body, and a connection part configured to interpose a seal member between the first and second bodies and allow a connecting tool to engage with engagement surfaces of the bodies. When a load is applied to the engagement surfaces to draw the first and second bodies close to each other, the seal member is press-fitted into the bodies. This press-fitted state is held by a clamp. One or both of the first and second bodies are internally provided with a plurality of the engagement surfaces extending in a nearly perpendicular direction to a drawing direction.
Abstract:
A fluid control valve includes: a resin valve main body including inlet and outlet ports in opposite side surfaces, a valve chamber communicating between the inlet and outlet ports and opening at the upper surface center of the main body, and a valve seat provided in an inner wall of the chamber; a valve element movable into or out of contact with the valve seat; and a valve upper body including a drive part to drive the valve element. An inflow passage is formed like an L shape extending through the inner wall to communicate between the inlet port and the chamber via the valve seat. The inner wall is cylindrical having a thick-wall portion to have a wall thickness thicker on the inlet port side than on the outlet port side. The valve main body is provided, at a center of a lower surface, with a resin injected part.