Abstract:
Techniques are provided for enabling tag networking. In one example, a network device (e.g., switch, router, etc.) is configured to receive a packet of a traffic flow and to analyze the traffic flow to determine the packet belongs to a particular type of traffic. The network device can then add and/or change a tag in a data field of the packet. The tag, among other things, serves as an identifier for the particular type of traffic flow. The tag is identifiable by a downstream node that is preconfigured to recognize the tag and to carry out logic in response to recognizing the tag. Advantageously, the tag functionality of the present approach provides a generalized way of adding information to packets; the information and the associated functionalities are customizable during a runtime of the network.
Abstract:
System, computer program product, and method to configure an external network based on internal network conditions, by monitoring a load attribute of one or more network flows traversing an ingress port of at least one network element in a software-defined networking (SDN) enabled network, upon determining that the load attribute of a first network element in the SDN enabled network exceeds a predefined threshold, provisioning, by the application, an additional service on the external network, by the application, an additional service on the external network, and extending, by the application, the SDN enabled network to include the additional service on the external network.
Abstract:
Techniques are provided for enabling tag networking. In one example, a network device (e.g., switch, router, etc.) is configured to receive a packet of a traffic flow and to analyze the traffic flow to determine the packet belongs to a particular type of traffic. The network device can then add and/or change a tag in a data field of the packet. The tag, among other things, serves as an identifier for the particular type of traffic flow. The tag is identifiable by a downstream node that is preconfigured to recognize the tag and to carry out logic in response to recognizing the tag. Advantageously, the tag functionality of the present approach provides a generalized way of adding information to packets; the information and the associated functionalities are customizable during a runtime of the network.
Abstract:
Techniques are provided for automating a common framework for network devices. In one example, a network device (e.g., switch, router, etc.) is configured to resolve the handling unknown packets automatically. The network device can detect whether or not a protocol is unknown to the network device, perform a lookup, determine if a matching protocol is available for the network device, and dynamically load an appropriate protocol handler into a memory of the network device. Advantageously, the present technology provides a mechanism for flexible on-demand push of protocol information. If a new protocol is noted on the network, the network device can look up the type of packet and can use a single platform kit to dynamically load drivers and control logic for that protocol onto the network device. Likewise, other network devices in the packet's path or in the network generally can load the drivers and control logic, as needed.
Abstract:
Techniques are disclosed for using arbitrary criteria to define events occurring within a network infrastructure, as well and techniques for detecting and responding to the occurrence of such custom events. Doing so allows a collection of networking elements (switches, routers, etc.) to perform a variety of distributed functions from within the network itself to respond to custom events. Further, because custom events are published across the network, multiple network elements can communicate and respond to the same event. Thus, unlike currently available event management systems, custom events (and responding applications) can be used to create and coordinate software defined networking within a common network infrastructure.
Abstract:
Techniques are disclosed for using arbitrary criteria to define events occurring within a network infrastructure, as well and techniques for detecting and responding to the occurrence of such custom events. Doing so allows a collection of networking elements (switches, routers, etc.) to perform a variety of distributed functions from within the network itself to respond to custom events. Further, because custom events are published across the network, multiple network elements can communicate and respond to the same event. Thus, unlike currently available event management systems, custom events (and responding applications) can be used to create and coordinate software defined networking within a common network infrastructure.
Abstract:
Techniques are disclosed to extend routing rules from external services. A request is received to modify a specified rule in a network element of a network. The specified rule governs disposition of a network flow specific to an application. The request is received via a communications channel configured to expose an application programming interface (API) to the application. The request is interpreted at a network abstraction layer of the network element. The request is converted into a command at a service implementation layer of the network element. The command is executed to modify the specified rule in the network element, responsive to the request.
Abstract:
Techniques are provided for enabling tag networking. In one example, a network device (e.g., switch, router, etc.) is configured to receive a packet of a traffic flow and to analyze the traffic flow to determine the packet belongs to a particular type of traffic. The network device can then add and/or change a tag in a data field of the packet. The tag, among other things, serves as an identifier for the particular type of traffic flow. The tag is identifiable by a downstream node that is preconfigured to recognize the tag and to carry out logic in response to recognizing the tag. Advantageously, the tag functionality of the present approach provides a generalized way of adding information to packets; the information and the associated functionalities are customizable during a runtime of the network.
Abstract:
Embodiments described herein use APIs on network devices in a SDN enabled network to monitor the network traffic flowing through the network devices and determine an identity of the client initiating the network traffic. Specifically, the APIs provide a user application with user credentials, IP addresses, MAC addresses, and other identifying information mined from the network flows. Once the identity is found, the application may identify the client's current geographic location. The network devices may continue to monitor the network devices to identify any movement events associated with the client. In response to a movement event, the application may reallocate resources proximate to the new geographic location of the client.
Abstract:
System, method, and computer program product to orchestrate software defined networking (SDN) applications, by providing a plurality of network elements in a network, each network element comprising a plurality of ingress interfaces, a plurality of egress interfaces, and a routing information base (RIB), providing, to an SDN application, an application program interface (API) to abstract properties and events of: (i) the ingress interfaces, (ii) the egress interfaces, and (iii) the RIB of a specified network element, receiving a request from the SDN application apply a function to the specified network element, the function specifying to modify: (i) a preprocessing operation on a data packet, (ii) the RIB, (iii) a post processing operation on the data packet, and (iv) the properties of the ingress interfaces, egress interfaces, and RIBs of the specified network element, and applying the function to the specified network element through the API.