Abstract:
Access Point (AP) placement using Fine Time Measurement (FTM) may be provided. First, a plurality of Time-of-Flight (ToF) values between a first service end point and a second service end point may be determined. Each one of the plurality of ToF values may be derived from packets transmitted via different beamforming vector patterns at the first service end point and the second service end point. Then a minimum ToF value of the plurality of ToF values may be determined. Next, a distance between the first service end point and the second service end point may be determined based on the minimum ToF value.
Abstract:
Offloading of location computation from a location server to an access point through the use of projections on base phase vectors may be provided. First, an Access Point (AP) may receive a set of two or more base phase vectors from a location server. Next, the AP may measure a measured phase vector for a first signal from a user device. Then, the AP can determine projection values based on a comparison of the measured phase vector to each base phase vector. From these comparisons, the AP can determine a subset of base phase vectors with the highest projection values. The AP can then send the projection values and the subset of base phase vectors to the location server, wherein the location server determines the device location from these projection values and subset of base phase vectors.
Abstract:
A method for adjusting an installation orientation of an access point within a predefined area with an associated orientation is disclosed. The method includes obtaining, at a computing apparatus, angle of arrival estimates from each access point based on a wireless transmission from a wireless mobile device. The computing device generates an estimated location of the wireless mobile device based on the angle of arrival estimates. Next, the computing device determines an orientation error for each wireless access point based on the angle of arrival estimate of the wireless mobile device and the estimated location of the wireless mobile device. The computing device generates an adjusted orientation of one or more of the access points based on the orientation error of the access point, thereby aligning the adjusted orientation with the orientation of the predefined area.
Abstract:
Techniques are presented herein for computing angle-of-arrival estimates while switching antenna states during a packet unit for the general Orthogonal Frequency Division Multiple Access (OFMDA) case (including a single user). A wireless device computes channel estimates throughout the entire frame and not only during the training symbols. Consequently, the wireless device computes channel estimates for all antennas in its array within a single frame instead of having to wait for multiple frames.
Abstract:
A wireless access point device wirelessly communicates with a plurality of wireless client devices. The wireless access point includes a central processor subsystem and a plurality of transceiver devices each including a plurality of antennas, and a plurality of radio transceivers, each of the plurality of transceiver devices configured for deployment throughout a coverage area, each transceiver device being connected to the central processor subsystem via a respective cable. The central processor subsystem distributes in-phase and quadrature baseband samples across the plurality of transceiver devices associated with traffic to be transmitted and received via the plurality of transceiver devices in one or more frequency bands so as to synthesize a wideband multiple-input multiple-output transmission channel and a wideband multiple-input multiple-output reception channel. The access point transmit and receive functions are “split” or partitioned across the plurality of transceivers devices.
Abstract:
Presented herein are techniques to ensure power emitted by APs during a cooperative MIMO transmission is within certain limits. For a transmission to be made from two or more wireless access points using cooperative multiple-input multiple-output (MIMO) techniques, a measure of separation is determined between the two or more access points. Precoding of signals to be transmitted by the two or more access points is adjusted so as to derate the signals to be transmitted or disable the cooperative nature of the transmission from the two or more access point depending on the measure of separation so that a combined output power from the two or more access points is within a limit.
Abstract:
In accordance with an embodiment, a method is provided in which a first wireless access point sends a downlink multi-user multiple-input multiple-output (MIMO) transmission to a plurality of client devices. The downlink multi-user MIMO transmission is configured to solicit acknowledgments from two or more of the plurality of client devices. The acknowledgments are received at a plurality of antennas of the first wireless access point from the two or more of the plurality of client devices. Uplink multi-user MIMO processing of the acknowledgments is performed from the two or more of the plurality of client devices to recover the acknowledgments respectively from each of the two or more of the plurality of client devices.
Abstract:
A set of receiver path circuits is allocated for processing a radio-frequency (RF) signal provided by receive antennas coupled to the receiver path circuits. The RF signal may belong to a first signal class, such as Wi-Fi. A first gain control signal is applied to each of the allocated receiver path circuits to condition a signal level of the RF signal for the first signal class. A second gain control signal is applied to another set of receiver path circuits coupled to the receive antennas to condition the RF signal of a second signal class. First receive gain control signals are generated from the RF signals of the first signal class by the allocated set of the receiver path circuits. The first receive gain control signals are configured to optimize the signal level for processing the first signal class. A second receive gain control signal is generated to optimize the signal level of the RF signal for the second signal class.
Abstract:
A plurality of time slots are allocated during which a location procedure is performed for one or more target wireless devices. Select ones of a plurality of wireless access points at different positions are assigned to each time slot such that multiple wireless access points assigned to a given time slot are sufficiently separated. In addition, wireless access points are assigned to a corresponding one of a plurality of groups for each time slot such that wireless access points assigned to a group tune to a channel used by a wireless access point in the group that transmits one or more frames that are intended to provoke one or more response frames from the one or more wireless devices.
Abstract:
Techniques are presented for distributed processing Distributed-Input Distributed-Output (DIDO) wireless communication. A plurality of base stations (e.g., APs) are provided, each configured to wirelessly serve one or more wireless devices (e.g., clients). At least first and second base stations are configured to transmit simultaneously at an agreed upon time. The first and second base stations are each configured to locally generate steering matrix information used to spatially precode their respective data transmissions in order to steer their respective data transmissions to their one or more wireless devices while nulling to the one or more client devices of the other base station. Moreover, the first and second base stations are each configured to locally generate a transmit waveform by applying the steering matrix information to their respective data transmissions.