Abstract:
A wafer inspection method and inspection apparatus are provided. On a wafer having layout lines connecting electrode points of individual dies in series, the dies within a matrix range are inspected one after another in turn in a column/row control means by a first switch group and a second switch group of a probe card, so that each die is selectively configured in a test loop of a test process by turning on/off of a corresponding switch. Thus, after inspection of a die under inspection (a selected die) within the matrix range is complete, the column/row control means is used to switch to a next die to achieve fast switching. Accordingly, for the inspection procedure of each die within the matrix region, a conventional procedure of moving one after another in turn can be eliminated, significantly reducing the total test time needed and enhancing inspection efficiency.
Abstract:
The present invention relates to a pogo pin cooling system and a pogo pin cooling method and an electronic device testing apparatus having the system. The system mainly comprises a coolant circulation module, which includes a coolant supply channel communicated with an inlet of a chip socket and a coolant recovery channel communicated with an outlet of the chip socket. When an electronic device is accommodated in the chip socket, the coolant circulation module supplies a coolant into the chip socket through the coolant supply channel and the inlet, and the coolant passes through the pogo pins and then flows into the coolant recovery channel through the outlet.
Abstract:
An inspection system with a thermal interface, and an electronic component inspection device and method are provided. First, a temperature regulator contacts an electronic component to be tested, where there is a thermal interface between the temperature regulator and the electronic component to be tested, and the electronic component to be tested includes a plurality of temperature sensing units. Then, the temperature regulator heats or cools the electronic component to be tested to a specific temperature, and the plurality of temperature sensing units of the electronic component to be tested detect temperatures at locations of the temperature sensing units. In this way, a contact condition between the temperature regulator and the electronic component to be tested, and quality or an aging status of the thermal interface can be determined.
Abstract:
The present invention relates to an aging test system and an aging test method for a thermal interface material and an electronic device testing apparatus having the system, wherein a controller controls a movable carrier to move to a high temperature generating device so that the thermal interface material on the movable carrier is brought into contact with the high temperature generating device; the controller further controls a temperature sensor to detect the temperature of the thermal interface material; the controller compares an output temperature datum of the high temperature generating device with a temperature measurement datum detected by the temperature sensor. Accordingly, the thermal conductivity of the thermal interface material can be obtained for immediately determining the quality and the performance degradation of the thermal interface material, which can be used as a reference for selection or replacement of the thermal interface material.
Abstract:
A solar cell testing system includes a multifunctional testing light source, a measuring unit, and an arithmetic unit. The multifunctional testing light source is configured to be switched to output a simulated solar light to a solar cell or asynchronously output a plurality of narrowband lights to the solar cell. The measuring unit is coupled to the solar cell and measures the solar cell's response to the simulated solar light and response to the asynchronously outputted narrowband lights. The arithmetic unit is coupled to the multifunctional testing light source and the measuring unit; it determines the solar cell's conversion efficiency and spectral response based on the solar cell's response to the simulated solar light and response to the asynchronously outputted narrowband lights.