Abstract:
An apparatus and method are disclosed for ablation of diseased tissue. The method includes introducing a flexible elongate member into a predetermined tissue site with a flexible elongate member having a proximal end, a distal end and a longitudinal first lumen extending therebetween. A slidable conductor is positioned through the lumen proximate to the tissue site and energy is transmitted to the distal end of the elongate member through the conductor. A deflection member fixedly attached to the distal end of the elongate member can be manipulated to cause the distal end of the elongate member to bend. The target tissue is ablated, coagulated or photochemically modulated without damaging surrounding tissue. The apparatus can be energy transparent and include deflection members to manipulate distal portions of the apparatus. Suitable types of energy for ablation include ultrasound and laser energy.
Abstract:
Surgical ablation instruments are disclosed for creating circumferential lesions in tissue, including cardiac tissue for treatment of arrhythmias and other diseases. These photoablative instruments include an elongate housing and an ablation element disposed within a lumen of the housing. A connecting element associated with the elongate housing brings together the proximal and distal ends of the elongate housing to form a loop, thereby creating an encircling lesion to be formed with the ablation energy.
Abstract:
Malleable surgical ablation instruments are disclosed for creating lesions in tissue, including cardiac tissue for treatment of arrhythmias and other diseases. The hand held instruments are especially useful in open chest or port access cardiac surgery for rapid and efficient creation of curvilinear lesions to serve as conduction blocks. The malleable instruments disclosed are well adapted for use in or around the intricate structures of the heart. In one example, the distal end of the instrument can have a malleable shape or be in the shape of an open loop so as to allow the loop to be placed around at least one a pulmonary vein or artery. Such instruments can incorporate various ablative elements such as ablative radiation, RF heating, cryogenic cooling, ultrasound, microwave, ablative fluid injection and the like.
Abstract:
Surgical ablation instruments are disclosed for creating lesions in tissue, including cardiac tissue for treatment of arrhythmias and other diseases. These photoablative instruments include a housing and an ablation element disposed within a lumen of the housing. An irrigation system associated with the instruments enables a cooling fluid to be introduced to the ablation element during delivery of the ablation energy.
Abstract:
Ablation methods and instruments are disclosed for creating lesions in tissue, especially cardiac tissue for treatment of arrhythmias and the like. Percutaneous ablation instruments in the form of coaxial catheter bodies are disclosed having at least one central lumen therein and having one or more balloon structures at the distal end region of the instrument. The instruments include an energy emitting element which is independently positionable within the lumen of the instrument and adapted to project radiant energy through a transmissive region of a projection balloon to a target tissue site. The instrument can optionally include at least one expandable anchor balloon disposed about, or incorporated into an inner catheter body designed to be slid over a guidewire. This anchor balloon can serve to position the device within a lumen, such as a pulmonary vein. A projection balloon structure is also disclosed that can be slid over the first (anchor balloon) catheter body and inflated within the heart, to define a staging from which to project radiant energy. An ablative fluid can also be employed outside of the instrument (e.g., between the balloon and the target region) to ensure efficient transmission of the radiant energy when the instrument is deployed. In another aspect of the invention, generally applicable to a wide range of cardiac ablation instruments, mechanisms are disclosed for determining whether the instrument has been properly seated within the heart, e.g., whether the device is in contact with a pulmonary vein and/or the atrial surface, in order to form a lesion by heating, cooling or projecting energy. This contact-sensing feature can be implemented by an illumination source situated within the instrument and an optical detector that monitors the level of reflected light. Measurements of the reflected light (or wavelengths of the reflected light) can thus be used to determine whether contact has been achieved and whether such contact is continuous over a desired ablation path.
Abstract:
Methods and systems are disclosed for detecting overheating in an optical device before harmful consequences, such as severe local heating, can result. In one embodiment of the invention, a blackbody emitter is disposed in close proximity to a therapeutic optical fiber to absorb therapeutic radiation at a fault and re-emit blackbody (infrared) radiation. The emitter can be coupled to the fiber but, during normal operation, lies outside the optical path between the output of the laser radiation and the site of treatment. Systems and catheters incorporating such emitters are also described for effective monitoring of the laser power transmitted along the optical fiber within the phototherapy device.