Abstract:
Provided is a piezoelectric material which is free of lead, has small temperature dependence of a piezoelectric constant and has a satisfactory piezoelectric constant. The piezoelectric material includes: an oxide having a perovskite-type structure containing Ba, Ca, Ti, and Zr; Mn; Bi; and W, wherein a ratio of the sum of the Ba and the Ca with respect to the sum of the Ti and the Zr is 0.986 or more and 1.02 or less, and wherein, with respect to 100 parts by mass of the oxide, a content of the Mn is 0.040 part by mass or more and 0.360 part by mass or less, a content of the Bi is 0.050 part by mass or more and 0.240 part by mass or less, and a content of the W is 0.100 part by mass or more and 0.380 part by mass or less.
Abstract:
Provided is an ultrasonic motor including an annular vibrator and an annular moving member that is brought into pressure-contact with the vibrator. The vibrator includes an annular vibrating plate and an annular piezoelectric element. The piezoelectric element includes an annular lead-free piezoelectric ceramic piece, a common electrode arranged on one surface of the piezoelectric ceramic piece, and a plurality of electrodes arranged on the other surface of the piezoelectric ceramic piece. The plurality of electrodes include two drive phase electrodes, one or more non-drive phase electrodes, and one or more detection phase electrodes. A second surface of the vibrating plate includes a plurality of groove regions extending radially, and the depths of the groove regions change in a circumferential direction along a curve obtained by superimposing one or more sine waves on one another. The ultrasonic motor exhibits a sufficient drive speed while suppressing generation of an unnecessary vibration wave.
Abstract:
A vibration device comprises a vibrating member having at least n (n≥2) piezoelectric elements arranged on a vibrating plate, each of the piezoelectric elements being formed by using a lead-free piezoelectric material and electrodes, wherein if the temperature that maximizes the piezoelectric constant of the piezoelectric material of each of the n piezoelectric elements is expressed as Tm (m being a natural number between 1 and n), at least two of T1 through Tn differ from each other.
Abstract:
A piezoelectric material which is low in load on the environment, and also satisfies both the requirements of a high piezoelectric constant and a high mechanical quality factor. The piezoelectric material comprises a plurality of crystal grains containing Ba, Ca, Ti, Zr, Mn, and O. An average equivalent circle diameter of the crystal grains is not smaller than 1.0 μm and not larger than 10 μm. The crystal grains include crystal grains A each having a first domain with a width of not smaller than 300 nm and not larger than 800 nm, and crystal grains B each having a second domain with a width of not smaller than 20 nm and not larger than 50 nm.
Abstract:
The present invention provides a lead-free piezoelectric material having a high piezoelectric constant and a high mechanical quality factor in a wide operating temperature range. The piezoelectric material includes a perovskite-type metal oxide represented by Formula (1): (Ba1-xCax)a(Ti1-yZry)O3 (1.00≦a≦1.01, 0.125≦x
Abstract:
There is provided a lead-free piezoelectric material having a high and stable piezoelectric constant and mechanical quality factor in a wide operating temperature range.A piezoelectric material mainly composed of a perovskite type metal oxide having the general formula (1), wherein manganese is incorporated in the metal oxide, and the Mn content is 0.12 parts by weight or more and 0.40 parts by weight or less on a metal basis per 100 parts by weight of the metal oxide. (Ba1-xCax)a(Ti1-y-zSnyZrz)O3 (1) (1.00≦a≦1.01, 0.125≦x≦0.300, 0
Abstract:
A ceramic powder contains a metal oxide represented by the following general formula (1). The ceramic powder has a single perovskite-type crystal phase. The ceramic powder is composed of particles having an average equivalent circular diameter in the range of 100 nm or more and less than 1000 nm and has a ratio c1/a1 in the range of 1.000≦c1/a1≦1.010, wherein c1 and a1 denote the c-axis length and a-axis length, respectively, of unit cells of the perovskite-type metal oxide, c1 being greater than or equal to a1. (Ba1-xCax)α(Ti1-y-zZryMnz)O3(0.9900≦α≦1.0100, 0.125≦x≦0.300, 0.020≦y≦0.095, 0.003≦z≦0.016)
Abstract:
Provided are a powder for laser manufacturing which can be stably manufactured and from which a three-dimensional manufactured object ensuring a manufacturing accuracy can be obtained and a using method thereof. A powder for ceramic manufacturing for obtaining a manufactured object by repeatedly sintering or fusing and solidifying in sequence a powder in an irradiation portion with laser light, in which the powder includes a plurality of compositions, at least one composition of the compositions is an absorber that relatively strongly absorbs the laser light compared to other compositions, and at least a part of the absorber changes to a different composition that relatively weakly absorbs the laser light by irradiation with the laser light and a using method of a powder in which the powder is used.
Abstract:
A vibration wave motor includes an annular oscillator, and an annular moving member provided so as to be in press contact with the oscillator. The oscillator includes an annular vibrating plate, and an annular piezoelectric element provided on a first surface of the vibrating plate. The vibrating plate is in contact with the moving member via a second surface of the vibrating plate, which is opposite the first surface. The piezoelectric element has a plurality of drive phase electrodes. When a driving region represents a region of the oscillator in which the drive phase electrodes are provided, and a non-driving region represents a remaining region of the oscillator, a contact area ratio S1 between the vibrating plate and the moving member in the non-driving region is less than a contact area ratio S2 between the vibrating plate and the moving member in the driving region.
Abstract:
A vibration wave motor includes a driven body, a vibrator including an annular vibration plate and an annular piezoelectric element, and a vibration damping member, which are arranged in sequence, wherein the vibration plate has, on a side facing the driven body, radially extending groove portions at X places, and, when center depths of the groove portions at X places are sequentially denoted by D1 to DX in a circumferential direction, D1 to DX vary along a curve obtained by superposing one or more sine waves, and wherein the vibration plate is locally supported by the vibration damping member in some or all antinode portions of a standing wave occurring when the vibration wave motor is driven.