摘要:
A method for template fabrication of ultra-precise nanoscale shapes. Structures with a smooth shape (e.g., circular cross-section pillars) are formed on a substrate using electron beam lithography. The structures are subject to an atomic layer deposition of a dielectric interleaved with a deposition of a conductive film leading to nanoscale sharp shapes with features that exceed electron beam resolution capability of sub-10 nm resolution. A resist imprint of the nanoscale sharp shapes is performed using J-FIL. The nanoscale sharp shapes are etched into underlying functional films on the substrate forming a nansohaped template with nanoscale sharp shapes that include sharp corners and/or ultra-small gaps. In this manner, sharp shapes can be retained at the nanoscale level. Furthermore, in this manner, imprint based shape control for novel shapes beyond elementary nanoscale structures, such as dots and lines, can occur at the nanoscale level.
摘要:
A method for template fabrication of ultra-precise nanoscale shapes. Structures with a smooth shape (e.g., circular cross-section pillars) are formed on a substrate using electron beam lithography. The structures are subject to an atomic layer deposition of a dielectric interleaved with a deposition of a conductive film leading to nanoscale sharp shapes with features that exceed electron beam resolution capability of sub-10 nm resolution. A resist imprint of the nanoscale sharp shapes is performed using J-FIL. The nanoscale sharp shapes are etched into underlying functional films on the substrate forming a nansohaped template with nanoscale sharp shapes that include sharp corners and/or ultra-small gaps. In this manner, sharp shapes can be retained at the nanoscale level. Furthermore, in this manner, imprint based shape control for novel shapes beyond elementary nanoscale structures, such as dots and lines, can occur at the nanoscale level.
摘要:
A method, system and computer program product for optimizing a manufacturing or fabrication process. A set of parameters for a selected model is received. A prior distribution of values for the model parameters is adopted which summarizes any known information for the model parameters. A utility function which reflects a purpose of an experiment is specified. After selecting an experimental design from a set of experimental designs and selecting experimental data from a sample space of data based on the selected experimental data, a Bayesian technique is used to calculate a posterior distribution of values for the model parameters based on the selected experimental data and the prior distribution of values for the model parameters. In response to the model uncertainty reaching a desired threshold, the posterior distribution of values for the model parameters is selected to be used to adjust the manufacturing/fabrication process to manufacture/fabricate a device.