摘要:
A system and method for vehicle dynamic control processes a compensated yaw rate signal measurement and a compensated lateral acceleration signal measurement (30, 32) to derive a signal measurement of road bank angle disturbance not compensated for in a compensated steering angle signal measurement and provides the derived signal to a controller (12). The compensated steering angle signal measurement is an input to the controller. Because a disturbance already compensated in the compensated steering angle signal measurement is transparent to the controller, the controller is able to adjust the control action of the vehicle dynamic control system based on the derived signal measurement of road bank angle disturbance not compensated for in a compensated steering angle signal measurement, thereby providing enhanced robustness of control.
摘要:
A method and apparatus for determining the stability of an automotive vehicle includes a steering wheel sensor generating a steering wheel signal, a yaw rate sensor generating a yaw rate signal and a lateral acceleration sensor for generating a lateral acceleration signal. A controller is coupled to the steering wheel sensor, the yaw rate sensor, and the accelerometer. The controller determines a first steering wheel angle from the yaw rate signal, a second steering wheel angle from the lateral acceleration signal, and a third steering angle from a steering wheel signal. The controller generates a vehicle stability indicator in response to the first steering wheel angle, the second steering wheel angle and the third steering wheel angle.
摘要:
A motor vehicle side collision avoidance system for avoiding collisions with objects. The system includes a direction sensor generating a direction signal corresponding a direction of motion of the vehicle, an external detector generating a detector signal corresponding to a location of objects outside of the vehicle, and a braking control system including at least two independently operable braking devices coupled to respective wheels. A processor is coupled to the direction sensor, the external detector, and the braking control system. The processor receives the direction and detector signals and is configured to send an avoidance signal to the braking control system based on the direction and detector signals. Upon receipt of the avoidance signal, the braking control system activates appropriate braking devices to avoid collision with the objects.
摘要:
When a motor vehicle is not in motion, an algorithm for establishing the initial zero point offset values for a yaw rate sensor as may be used in motor vehicle software control systems. The initial values are the manufactured values and are downloaded into the vehicle ECU at the time of the manufacture of the ECU. When the vehicle is waken at the vehicle assembly and the ignition is first turned on, the initial actual value of the zero point offset is stored both as a maximum and minimum value. At subsequent adjusting times when the vehicle is not moving, but the ignition is on, the spread between the maximum and minimum values are checked. If the spread becomes greater than a desired predetermined spread, the value, be it the maximum or minimum value reflects the measured value and the other value is adjusted to be within the desired spread. When the ignition is turned off and the vehicle is not moving, the zero point offset maximum and minimum values are stored in memory. The mean value is calculated to provide the new zero point offset value of the yaw rate sensor when the vehicle ignition is then turned on and the vehicle is not moving.
摘要:
For a motor vehicle 10, a method for generating a map of a vehicle's dynamic steering ratio as a function of vehicle velocity and yaw rate. The steering ratio accounts for vehicle system compliance during dynamic maneuvers. The mapping of the steering ratio is used in an algorithm to estimate the vehicle's steering wheel angle while the vehicle is in a dynamic maneuver such as a turning maneuver. This estimation is based on the front wheel steer angles that are derived from the yaw rate and longitudinal velocity and the steering ratio.
摘要:
A misalignment detection system (12) for steering system of an automotive vehicle (10) includes a controller (14) coupled to a velocity sensor (18), and a yaw rate sensor (20). The controller is also coupled to a memory (16) that is used to store a steering ratio memory map and a historic steering wheel angle. The controller (14) determines a base steering wheel angle when the vehicle velocity is at a predetermined velocity. The base steering wheel angle is a function of the vehicle velocity, the yaw rate, and the steering ratio. The controller compares the current steering wheel angle with a historic steering wheel angle to determine an error. An indicator (22) may be provided to the vehicle operator to signal the presence of the misalignment of the steering system.
摘要:
A method for determining a steering wheel angle of a vehicular steering system includes determining a center position for the steering sensor output every time the vehicle is started. The method employs the use of a yaw sensor for computing an estimate of the actual steering position so that a center position may be back computed to provide immediate and accurate steering position data using the steering sensor signal for controlling an automotive device. The accuracy of the initial estimates may be improved upon by implementing interim and final center algorithms as vehicle operating characteristics permit.
摘要:
A method for determining a steering wheel angle of a vehicular steering system includes determining a center position for the steering sensor output every time the vehicle is started. The method employs the use of a yaw sensor for computing an estimate of the actual steering position so that a center position may be back computed to provide immediate and accurate steering position data using the steering sensor signal for controlling an automotive device. The accuracy of the initial estimates may be improved upon by implementing interim and final center find algorithms as vehicle operating characteristics permit.
摘要:
An adaptive display system includes a display component to present an image to a user, a sensor for detecting a vision characteristic of the user and generating a sensor signal representing the vision characteristic of the user; and a processor in communication with the sensor and the display component, wherein the processor receives the sensor signal, analyzes the sensor signal based upon an instruction set to determine the vision characteristic of the user, and controls a visual output of the display component based upon the vision characteristic of the user.
摘要:
A variable blind spot warning system for detecting objects in a blind spot of a motor vehicle. The system includes at least one movable side view device coupled to a position sensor. The position sensor generates a position signal corresponding to an orientation of the side view device. At least one external detector generates a detector signal corresponding to a location of objects outside of the motor vehicle. A processor reads the position signal and the detector signal and calculates blind spot boundaries based on the position signal. The processor thereafter compares the blind spot boundaries to the object locations and provides an indication to a driver of the vehicle if an object is within the calculated blind spot boundaries.