Abstract:
Per- and polyfluoroalkyl substances (PFAS) are destroyed by oxidation in supercritical conditions. PFAS in water is concentrated in a reverse osmosis step and salt from the resulting solution is removed in supercritical conditions prior to destruction of PFAS in supercritical conditions.
Abstract:
The present disclosure relates to systems and methods for measuring oil/water content in oil-water mixtures, regardless of the salinity of the mixture and regardless of air in the sensor pipe. In some embodiments, the oil content is measured using a dielectric sensor. It is determined whether the oil content is above or below a threshold. If the oil content is above the threshold, the oil content is reported using the measurement from the dielectric sensor. If the oil content is below the threshold, the oil content is reported using the measurement from the eddy current sensor. In some embodiments, which improve performance when there is air in the sensor pipe, two dielectric sensors with different geometries are used instead of the one dielectric sensor.
Abstract:
Methods and apparatuses are provided for pyrolysis using a falling bed reactor. The falling bed reactor may result in effective mixing between a heat carrier and biomass, and may reduce or eliminate inert gas requirements.
Abstract:
The present disclosure relates to systems and methods for measuring oil/water content in oil-water mixtures, regardless of the salinity of the mixture and regardless of air in the sensor pipe. In some embodiments, the oil content is measured using a dielectric sensor. It is determined whether the oil content is above or below a threshold. If the oil content is above the threshold, the oil content is reported using the measurement from the dielectric sensor. If the oil content is below the threshold, the oil content is reported using the measurement from the eddy current sensor. In some embodiments, which improve performance when there is air in the sensor pipe, two dielectric sensors with different geometries are used instead of the one dielectric sensor.
Abstract:
Per- and polyfluoroalkyl substances (PFAS) are destroyed by oxidation in supercritical conditions. PFAS in water can be concentrated and prepared for destruction in a pretreatment phase. Following annihilation of the PFAS in supercritical conditions to levels below 5 parts per trillion (ppt), the water effluent can be used to recover heat, returned to sub-critical conditions, and then released back into the environment.
Abstract:
Methods of mapping a subterranean formation using imploding particles are described. In some cases, the particles contain a material that generated a gas which passes through a water-insoluble coating to create a void within the particle. In some aspects, the implosive particles have a coating that dissolves in the subterranean formation.
Abstract:
Methods of recovering rare earth elements, vanadium, cobalt, or lithium from coal are described. The coal is dissolved in a first solvent to dissolve organic material in the coal and create a slurry containing coal ash enriched with rare earth elements, vanadium, cobalt, or lithium. The enriched coal ash is separated from the first solvent. Residual organic material is removed from the coal ash. The rare earth elements, vanadium, cobalt, or lithium can then be recovered from the coal ash. The coal ash is mixed with an acid stream that dissolves the rare earth elements, thereby creating (i) a leachate containing the rare earth elements and (ii) leached ash. The leachate is heated to obtain acid vapor and an acid-soluble rare earth concentrate. The acid-soluble rare earth concentrate can be fed to a hydrometallurgical process to separate and purify the rare earth elements.
Abstract:
A system for recovering rare earth elements from coal ash includes a leaching reactor, an ash dryer downstream of the leaching reactor, and a roaster downstream of the ash dryer that is cooperatively connected to both the leaching reactor and the ash dryer. Coal ash is mixed with an acid stream such that rare earth elements present in the coal ash are dissolved in the acid stream, thereby creating (i) a leachate containing the rare earth elements and (ii) leached ash. The leachate is heated to obtain acid vapor and an acid-soluble rare earth concentrate. Mixing of the coal ash with the acid stream can occur in a leaching reactor and heating of the leachate can occur in a roaster. The acid-soluble rare earth concentrate can be fed to a hydrometallurgical process to separate and purify the rare earth elements.
Abstract:
Systems and processes for purifying and concentrating a liquid feed stream are disclosed. In the systems, the concentrated liquid output from the high pressure side of a reverse osmosis stage is used as the draw solution in the low pressure side of the reverse osmosis stage in a configuration called osmotically assisted reverse osmosis. This reduces the osmotic pressure differential across the membrane, permitting high solute concentrations to be obtained, hastening the purification of the liquid. Reduced system pressures are also obtained by arranging multiple osmotically assisted reverse osmosis stages in a cross-current arrangement. Overall system energy consumption is reduced compared to conventional thermal processes for high concentration streams.