Abstract:
Cellular processors are cascaded to provide different configurations, which result in higher-capacity base stations, increased numbers of simultaneous users over one frequency band, and/or aggregation of several carriers while still using only one radiofrequency (RF) chipset. The processors are aligned in both time and frequency, with each processor having a data port that allows data exchange with the other processors. The data alignment and exchange allow the processors, in the aggregate, to act as a single unit, resulting in a scalable architecture that can accommodate different system configurations.
Abstract:
Cellular processors are cascaded to provide different configurations, which result in higher-capacity base stations, increased numbers of simultaneous users over one frequency band, and/or aggregation of several carriers while still using only one radiofrequency (RF) chipset. The processors are aligned in both time and frequency, with each processor having a data port that allows data exchange with the other processors. The data alignment and exchange allow the processors, in the aggregate, to act as a single unit, resulting in a scalable architecture that can accommodate different system configurations.
Abstract:
Chip instrumentation determines, in-situ, an allowable increase over product specification in the operating frequency of at least one clock domain in an integrated circuit for a given set of environmental, power supply and/or functionality constraints. Information on the allowable increase in operating frequency for the at least one clock domain is provided to circuits and/or software to effect change in operating frequency.
Abstract:
Cellular processors are cascaded to provide different configurations, which result in higher-capacity base stations, increased numbers of simultaneous users over one frequency band, and/or aggregation of several carriers while still using only one radiofrequency (RF) chipset. The processors are aligned in both time and frequency, with each processor having a data port that allows data exchange with the other processors. The data alignment and exchange allow the processors, in the aggregate, to act as a single unit, resulting in a scalable architecture that can accommodate different system configurations.
Abstract:
Recent LTE communications schemes utilize such large amounts of data traffic, that there is little available bandwidth for performing sniffing of nearby base stations and/or cells, which is often integral in performing carious calibrations. Utilizing an LTE scheduler, small data traffic gaps can be detected in one or both of the receive chain and transmit chain. During these data traffic gaps, portions of sniffing data can be acquired and stored without significant interruption to the communication chains, where the overall process may be referred to as “blinking.” Over time, these portions can be accumulated in memory until a sufficient. Over time, these portions can be accumulated in memory until a sufficient amount of sniffing data has been acquired. Once sufficient data has been acquired, sniffing analysis can be performed in the background on the combined data.
Abstract:
Systems and methods for adaptive access and handover configuration based on historical data are provided. Access and handover decisions are optimized in a multiple radio access technology environment using historical data associated with network performance. Future needs for access and handovers are predicted using historical data associated with the user and historical data associated with network performance. Performance metrics are received periodically or continuously from nodes in one or more networks at a centralized controller. The centralized multi RAT controller correlates these performance metrics and determines predicted handovers for a user device. Preparations for the predicted handovers can then be made prior to the handover event.