Abstract:
A Method and system for a RFID transponder with configurable feed point for RFID communications is provided. In this regard, an RFID transponder may receive RF signals via a leaky wave antenna and modulate an amplitude of a backscattered signal associated with the received RF signals by switching between a plurality of feed points of the leaky wave antenna to vary an input impedance of said RFID transponder. Each of the plurality of feed points may be located in a different position in the resonant cavity of the leaky wave antenna. The input impedance may be controlled by switching a load in and out of a receive path of the RFID transponder. The leaky wave antenna may be integrated within and/or on an integrated circuit, an integrated circuit package, or a combination thereof.
Abstract:
Aspects of a method and system for power supply adjustment and polar modulation in a MIMO system are provided. In each RF transmit chain of a MIMO system that utilizes polar modulation, aspects of the invention may enable generating a signal representative of an amplitude of a pair of phase-quadrature baseband signals; and controlling a voltage and/or current regulator utilizing said generated signal. In this regard, a voltage and/or current supplied to a power amplifier and/or mixer of one or more of the transmit chains may be controlled based on the generated signal. Additionally, a gain of a power amplifier for each RF transmit chain may be controlled utilizing said signal representative of an amplitude. The signal representative of an amplitude may be generated by squaring each of the phase-quadrature baseband signals and calculating a square root of a sum of the squared signals.
Abstract:
A transmitter front-end for wireless chip-to-chip communication, and for other, longer-range (e.g., several meters or several tens of meters) device-to-device communication is disclosed. The transmitter front-end can include a plurality of reflector power amplifiers implemented on an IC chip and an on-chip or on-package antenna for wireless transmitting a signal to another IC chip or device. The plurality of reflector power amplifiers can reflect the radiation of the on-chip or on-package antenna in a particular pattern such that the effective radiation pattern is reinforced in a desired direction and suppressed in an undesired direction. This helps to reduce the required output power of the transmitter front-end and mitigate interference with other potential wireless chip-to-chip or longer-range communications.
Abstract:
A transmitter front-end for wireless chip-to-chip communication, and potentially for other, longer range (e.g., several meters or several tens of meters) device-to-device communication, is disclosed. The transmitter front-end includes a distributed power amplifier capable of providing an output signal with sufficient power for wireless transmission by an on-chip or on-package antenna to another nearby IC chip or device located several meters or several tens of meters away. The distributed power amplifier can be fully integrated (i.e., without using external components, such as bond wire inductors) on a monolithic silicon substrate using, for example, a complementary metal oxide semiconductor (CMOS) process.