Abstract:
A rotary display device includes a display module, a rotating shaft, a transmission apparatus, an acquisition apparatus and a control apparatus. The transmission apparatus is configured to drive the display module to rotate with the rotating shaft. The control apparatus is configured to: receive information of picture(s), acquired by the acquisition apparatus, of an outside of the display module and determine whether a picture includes face figure(s); if no face figure is included in the picture, control the display module to display images in a first condition; if the face figure(s) are included in the picture, control the display module to display images in a second condition. A second refresh rate in the second condition is greater than a first refresh rate in the first condition, and a second color depth in the second condition is greater than a first color depth in the first condition.
Abstract:
A display-driving apparatus for driving a display panel having at least two display areas is provided. The apparatus includes a storage device configured to receive and store a group of source data signals corresponding to a frame of image. The apparatus further includes a demultiplexer configured to split the group of source data signals into at least two sub-groups of data signals. Additionally, the apparatus includes a converter configured to convert a signal format of a respective one of the at least two sub-groups of data signals to a displayable format corresponding to the display panel. Furthermore, the apparatus includes a controller configured to transfer the at least two sub-groups of data signals in the displayable format to respective at least two display areas of the display panel to display a frame of image.
Abstract:
A pixel driving circuit for a light-emission-device-based display panel is provided, including a driving transistor coupled to a light-emission device per subpixel; a digital-driving circuit having a first input terminal configured to receive a pixel voltage signal corresponding to a grayscale level of a subpixel image to be displayed and a first output terminal coupled to a gate terminal of the driving transistor. The digital-driving circuit is configured to convert the pixel voltage signal to a digital signal and transform the digital signal to a pulse-width-modulation (PWM) signal outputted via the first output terminal to the gate terminal of the driving transistor. The PWM signal comprises a pulse width proportional to the grayscale level as a duty cycle in a period of driving the light-emitting device to display subpixel image.
Abstract:
The present disclosure discloses a source driving circuit and a display panel. The source driving circuit includes a plurality of driving sub-circuits, and each of the plurality of driving sub-circuits includes: a driver, including a plurality of source channels; a plurality of switches, first terminals of the plurality of switches are electrically connected to a plurality of data lines of a display panel in one-to-one correspondence, wherein each of the plurality of source channels is electrically connected to second terminals of at least two of the plurality of switches; and a control line, electrically connected to control terminals of the plurality of switches. Sub-pixels corresponding to data lines that are electrically connected to a same source channel through the switches have the same polarity and the same color.
Abstract:
The display technologies relate to a method and computer-readable medium for displaying image and to a display device configured to perform the method for displaying image. The image display method includes acquiring an image for display in an nth frame on a display screen; detecting a first sub-image and a second sub-image within the image, a resolution of the first sub-image being higher than a resolution of the second sub-image; comparing the first sub-image in the nth frame with a corresponding sub-image in an (n−1)th frame; and refreshing a localized area of the display screen positionally corresponding to the first sub-image to display an interpolated sub-image in the localized area.
Abstract:
A method for filling holes in a naked-eye 3D multi-viewpoint image is provided, comprising: sequentially performing a step of mapping, determining and marking row by row, comprising mapping two first pixels adjacent to each other in a row direction among a plurality of first pixels in a reference camera image to two second pixels in a virtual camera image, determining whether there is a hole between the two second pixels, and if so, marking the hole; and sequentially performing a step of scanning, assessing and filling row by row, comprising scanning two second pixels adjacent to each other in a row direction, assessing whether there is a marked hole between the two adjacent second pixels, and filling the marked hole according to at least one non-zero second pixel which is adjacent to the marked hole.
Abstract:
The embodiments of the present invention provide a display device and a driving method thereof, which relates the display technology and can avoid occurrence of bad bright line of the image and improve display quality of the image. The display device may comprise a display panel and a backlight module disposed below the display panel, the display panel may comprise at least one display area, the display area may comprise at least one sub display area, the backlight module may comprise at least one light emitting unit, the light emitting units are in one-to-one correspondence with the sub display areas. Each sub display area may comprise at least one row of pixel units, the pixel units may comprise switch elements. When the switch elements of the first row of pixel units in a sub display area are turned on, the light emitting unit in the backlight module corresponding to the sub display area is in a turn-on state, when the switch elements in the last row of pixel units in a sub display area are turned off, the light emitting unit in the backlight module corresponding to the sub display area is in a turn-off state. The embodiments of the present invention may be applied to the manufacture of the display device.
Abstract:
The application provides a brightness detection method, a computer device and a readable medium, where the brightness detection method includes: using each of display modules in a display module production line as a test module separately, where the test module is provided with a photosensitive sensor; obtaining a brightness algorithm formula of the photosensitive sensor of each of the test module; and performing, according to the brightness algorithm formula, ambient light detection by the photosensitive sensor.
Abstract:
Provided is a method of calibrating a stereoscopic display device. The device includes a motor and a display panel, and the display panel is driven by the motor to rotate to realize a stereoscopic display. The method includes acquiring a control strategy of the motor and display parameters of the display panel matching the control strategy, wherein the control strategy indicates that each time the motor runs for a preset period of time, the motor is restarted; controlling the motor to run according to the control strategy, to calibrate the motor by restarting; and driving the display panel to display according to the display parameters in the rotation process of the motor.
Abstract:
The present disclosure relates to a driving method of a head mounted display apparatus. The driving method may include: acquiring posture information of a head mounted display apparatus in real time using a posture detector; acquiring data of a first image, determining first posture information corresponding to the first image and second posture information corresponding to a second image based on the posture information provided by the posture detector, and determining data of the second image based on the data of the first image, the first posture information and the second posture information, wherein the data of the first image is provided by a main processor, and the second image is an interpolated frame image obtained by rendering the first image; and displaying the first image and the second image sequentially using a display device.