Abstract:
The embodiments of the present disclosure provide a touch driving unit and circuit, a display panel and a display device. The touch driving unit comprises a shift control module, a selection module, a buffer module and an amplitude control module; the shift control module includes a start signal terminal, an output terminal and at least one clock signal terminal; the selection module includes a first input terminal, a second input terminal and an output terminal; the buffer module including an input terminal and an output terminal; and the amplitude control module including an input terminal and an output terminal. The embodiments of the present disclosure are used for display manufacturing.
Abstract:
The present disclosure provides a touch display panel and a display device including the touch display panel. The touch display panel includes a display panel, a touch layer and a touch driving circuit board. The display panel includes an array substrate and a color filter substrate arranged opposite to the array substrate to form a cell. The touch layer is arranged at an outer surface of the color filter substrate away from the array substrate, an electrode at the touch layer is connected to a wire through a conductor penetrating through the color filter substrate, and the wire is connected to the touch driving circuit board.
Abstract:
The embodiments of the present invention provide a display device and a driving method thereof, which relates the display technology and can avoid occurrence of bad bright line of the image and improve display quality of the image. The display device may comprise a display panel and a backlight module disposed below the display panel, the display panel may comprise at least one display area, the display area may comprise at least one sub display area, the backlight module may comprise at least one light emitting unit, the light emitting units are in one-to-one correspondence with the sub display areas. Each sub display area may comprise at least one row of pixel units, the pixel units may comprise switch elements. When the switch elements of the first row of pixel units in a sub display area are turned on, the light emitting unit in the backlight module corresponding to the sub display area is in a turn-on state, when the switch elements in the last row of pixel units in a sub display area are turned off, the light emitting unit in the backlight module corresponding to the sub display area is in a turn-off state. The embodiments of the present invention may be applied to the manufacture of the display device.
Abstract:
The present disclosure relates to a touch display panel, a method and a device for driving the touch display panel. The method is applied to the touch display panel which includes L gate lines arranged sequentially and M touch scan lines arranged sequentially, where both L and M are positive integers larger than 1. The method includes dividing a duration for which the touch display panel displays each frame of image into N control time intervals with each of the N control time intervals including a display refresh time and a touch time arranged sequentially, where N is an integer larger than 1, during the duration for which the touch display panel displays each frame of image, driving the L gate lines sequentially in N display refresh times, and driving the M touch scan lines sequentially for K times in N touch times, where K is larger than 1.
Abstract:
The present disclosure provides an OLED touch panel, comprising: a substrate; a cathode and an anode, arranged on the substrate, wherein the cathode comprise a plurality of sub-cathodes; and at least one touch driving electrode, arranged on a same layer as the anode and separated from the anode, wherein the touch driving electrode is disposed to be intersected with the sub-cathodes; wherein the OLED touch panel is configured to, at a displaying phase, apply a driving signal for displaying on the cathode or the anode, so as to drive an OLED device, and applying, at a touching phase, a driving signal for touching on the touch driving electrode, so that at least a part of the sub-cathodes are operated as touch sensing electrodes, to output a touch sensing signal. The present disclosure also provides a display apparatus comprising the above OLED touch panel and a method for driving the same. The present disclosure uses the anode and cathode layer of the OLED device as an electrode layer of the touch sensor. Thus, by performing the touching and displaying of the touch display in a time sharing manner, the electrode layer can be omitted, and the thinner touch display can be manufactured.
Abstract:
The embodiments of the present invention provide a display device and a driving method thereof, which relates the display technology and can avoid occurrence of bad bright line of the image and improve display quality of the image. The display device may comprise a display panel and a backlight module disposed below the display panel, the display panel may comprise at least one display area, the display area may comprise at least one sub display area, the backlight module may comprise at least one light emitting unit, the light emitting units are in one-to-one correspondence with the sub display areas. Each sub display area may comprise at least one row of pixel units, the pixel units may comprise switch elements. When the switch elements of the first row of pixel units in a sub display area are turned on, the light emitting unit in the backlight module corresponding to the sub display area is in a turn-on state, when the switch elements in the last row of pixel units in a sub display area are turned off, the light emitting unit in the backlight module corresponding to the sub display area is in a turn-off state. The embodiments of the present invention may be applied to the manufacture of the display device.
Abstract:
Disclosed are a semiconductor fingerprint identification sensor and a method for manufacturing the same. The semiconductor fingerprint identification sensor includes: a sensing area, a control area and an interface area; the sensing area, the control area and the interface area are communicated with one another; a fingerprint information sensed in the sensing area is sent to the control area, and is output through the interface area after being processed in the control area; the sensing area includes an insulation layer, an wiring layer, a substrate layer and a protective layer which are stacked in a sequence, the wiring layer is embedded between the insulation layer and the substrate layer, a sensor array is disposed on a side of the substrate layer being in contact with the protective layer, a via hole corresponding to the sensor array is disposed on the substrate layer, the sensor array is electrically connected with a sensing lead circuit of the wiring layer through the via hole. The semiconductor fingerprint identification sensor has advantages of low cost, high signal-to-noise ratio and good reliability.
Abstract:
A display panel and a display device are disclosed. The display panel comprises: a gate line and a common electrode structure extended along a first direction; and a data line extended along a second direction. the gate line, the common electrode structure, and the data line are intercrossed with each other and correspond to a sub-pixel; one end of the data line is connected with a source driving circuit and the other end of the data line is connected with a touch sensing terminal; and one end of the common electrode structure is connected with a common voltage input terminal and the other end of the common electrode structure is connected with a touch transmitting terminal.
Abstract:
The present disclosure provides a touch display panel and a display device including the touch display panel. The touch display panel includes a display panel, a touch layer and a touch driving circuit board. The display panel includes an array substrate and a color filter substrate arranged opposite to the array substrate to form a cell. The touch layer is arranged at an outer surface of the color filter substrate away from the array substrate, an electrode at the touch layer is connected to a wire through a conductor penetrating through the color filter substrate, and the wire is connected to the touch driving circuit board.
Abstract:
The embodiments of the present disclosure provide a touch driving unit and circuit, a display panel and a display device. The touch driving unit comprises a shift control module, a selection module, a buffer module and an amplitude control module; the shift control module includes a start signal terminal, an output terminal and at least one clock signal terminal; the selection module includes a first input terminal, a second input terminal and an output terminal; the buffer module including an input terminal and an output terminal; and the amplitude control module including an input terminal and an output terminal. The embodiments of the present disclosure are used for display manufacturing.