Abstract:
The present invention discloses an organic electroluminescent display device and a display apparatus, wherein the organic electroluminescent display device employs an optical film lamination as a base substrate or a packaging cover plate, the optical film lamination includes a circular polarizer film, a water-oxygen resistant film and a color resistant film that are located on a supporting substrate, thus it has an antireflection function, a good water-oxygen resistance as well as a full-color display function, so that not only the problem of fussy process and high cost of an OLED display device caused by film application can be solved, but also the problem that the thickness of a flexible OLED display device is increased and thus the device is difficult to be rolled up due to film application is avoided; also, the OLED display device has the advantages of being lighter and thinner and having a better display effect, etc.
Abstract:
An OLED driving compensation circuit and a driving method thereof are provided. The circuit comprises an external compensation module and a driving module comprising a driving transistor and a storage capacitor. The driving transistor is respectively connected with a power supply voltage terminal and an OLED via a first electrode and a second electrode thereof, a first terminal of the storage capacitor is connected with a control electrode of the driving transistor, and a second terminal thereof is connected between the driving transistor and the OLED. The external compensation module is connected between the driving transistor and the OLED and provides a reference voltage to the electrode of the driving transistor connected with the second terminal of the storage capacitor, to reset the voltage on the electrode. The power supply voltage terminal as variable voltage source inputs a first voltage equal to the reference voltage when the voltage is reset.
Abstract:
A thin film transistor, an array substrate and a display device are disclosed, the thin film transistor comprises a gate electrode, an active layer located on the gate electrode, and a source electrode and a drain electrode respectively located at opposite sides of the active layer and both partially overlapped with the active layer; the active layer includes at least one first structure part and at least one second structure part, a material for the first structure part is semiconductor, and a material for the second structure part is predetermined conductor, and the predetermined conductor has better conductivity than the conductivity of the conducted semiconductor, and in response to that a turn-on voltage is applied to the gate electrode, a conductive passage located between the source electrode and the drain electrode includes the first structure part and the second structure part.
Abstract:
An organic electroluminescent display element, an optical thin film laminate and a production method thereof are disclosed. The optical thin film laminate comprises a circular polarizer film layer, a protection film layer provided on the light incidence side of the circular polarizer film layer, an adhesive layer provided on the light output side of the circular polarizer film layer, and a moisture and oxygen resistant film layer; wherein the moisture and oxygen resistant film layer is provided between the light output side of the circular polarizer film layer and the adhesive layer, and/or, between the light incidence side of the circular polarizer film layer and the protection film layer.
Abstract:
A thin film transistor, an array substrate and a display device are disclosed, the thin film transistor comprises a gate electrode, an active layer located on the gate electrode, and a source electrode and a drain electrode respectively located at opposite sides of the active layer and both partially overlapped with the active layer; the active layer includes at least one first structure part and at least one second structure part, a material for the first structure part is semiconductor, and a material for the second structure part is predetermined conductor, and the predetermined conductor has better conductivity than the conductivity of the conducted semiconductor, and in response to that a turn-on voltage is applied to the gate electrode, a conductive passage located between the source electrode and the drain electrode includes the first structure part and the second structure part.
Abstract:
A packaging method for an organic light emitting display panel, an organic light emitting display panel and a display device are disclosed. The packaging method includes: forming a water/oxygen blocking layer that covers a whole base substrate on the base substrate with an organic light emitting device and a peripheral bonding region formed thereon, etching the water/oxygen blocking layer on the base substrate, so as to at least remove the water/oxygen blocking layer on a connection terminal within the bonding region, and to retain the water/oxygen blocking layer on the organic light emitting device. With the packaging method, an organic light emitting display panel with a narrow frame can be realized.
Abstract:
An organic electroluminescent device and a manufacturing method thereof, and a display device. The organic electroluminescent device comprises comprising a base substrate, a packaging structure, an organic electroluminescent structure located between the base substrate and the packaging structure, and a flexible printed circuit board; the base substrate being provided with a peripheral wiring structure electrically connected with an internal wiring of the organic electroluminescent structure; the peripheral wiring structure including a welding part. The welding part has a first surface facing the base substrate, at least a portion of the first surface being exposed to electrically connect with a welding terminal of the flexible printed circuit board.
Abstract:
A method for manufacturing spacers and a method for manufacturing a display substrate are disclosed. The method for manufacturing spacers includes performing an over-development process on the photoresist layer processed by the exposure process to form a first photoresist pattern and a second photoresist pattern on the substrate; an outer edge of a lower portion of the first photoresist pattern near the substrate is provided with a recess, and an outer edge of a lower portion of the second photoresist pattern near the substrate is provided with a recess; waiting a first duration for photoresist on a surface of the first photoresist pattern to flow downwards to fill the recess of the first photoresist pattern, and photoresist on a surface of the second photoresist pattern to flow downwards to fill the recess of the second photoresist pattern.
Abstract:
Disclosed are an organic electroluminescent display and a method for preparing the same, and a display device. The organic electroluminescent display comprises: a base substrate; an organic electroluminescent pixel array, which is set on the base substrate; a packaging coverplate or a packaging film, which is covered outside the organic electroluminescent pixel array; and a phase difference film and a polarization functional film located inside the packaging coverplate or the packaging film and attached to the organic electroluminescent pixel array in turn. In the organic electroluminescent display according to the invention, the unnecessary films, such as a TAC films that need to be attached to the two sides of a polarization functional film in an existing circular sheet polarizer and a binding agent layer, etc., can be omitted, thereby the transmittance of a display can be improved, and the contrast of a display can be increased; moreover, the overall thickness of a display may be reduced, and the problem of being difficult to roll up may be avoided; and there exists no interference of oxygen and aqueous vapor, thus the durability of the circular sheet polarizer can be increased.
Abstract:
The present invention discloses an organic electroluminescent display element, an optical thin film laminate and a production method thereof. The optical thin film laminate comprises a circular polarizer film layer, a protection film layer provided on the light incidence side of the circular polarizer film layer, an adhesive layer provided on the light output side of the circular polarizer film layer, and a moisture and oxygen resistant film layer; wherein the moisture and oxygen resistant film layer is provided between the light output side of the circular polarizer film layer and the adhesive layer, and/or, between the light incidence side of the circular polarizer film layer and the protection film layer. Because the optical thin film laminate comprises the circular polarizer film layer and the moisture and oxygen resistant film layer, it may have both anti-reflection function and good moisture and oxygen resistant performance. When such dual functional optical thin film laminate is applied to OLED element, it may not only solve the problems of complicated process, increased cost, and the difficulty in rolling the flexible OLED element caused by duple film adhering; but also bring advantages such as more lightweighting and thinness, better display effect, and the like to the OLED element.