Abstract:
The power supply device includes an AC-DC conversion unit configured to provide a source DC voltage signal; a first DC-DC conversion unit configured to generate a first DC voltage signal and a second DC voltage signal according to the source DC voltage signal, output the first DC voltage signal to the load through a first output interface and output the second DC voltage signal to the load through a second output interface; a reference voltage signal generation unit configured to generate a reference voltage signal by taking the first DC voltage signal and the second DC voltage signal as input signals, output the reference voltage signal to the load; wherein a voltage value of the reference voltage signal is smaller than a voltage value of the first DC voltage signal and is greater than a voltage value of the second DC voltage signal.
Abstract:
The present invention discloses a display device comprising the structure. The pixel structure comprises multiple pixel units arranged in a matrix form, and multiple gate lines and data lines for providing drive to the multiple pixel units, wherein the multiple pixel units are scanned progressively in unit of L rows; the L rows of pixel units being simultaneously scanned among the plurality of pixel units are configured as a pixel block; and at least two adjacent rows of pixel units in the L rows of pixel units being used for displaying different images, wherein L≧3. By adopting the pixel structure, the problems of undercharge of a storing capacitor Cs and RC delay of the data lines are alleviated, thus the display uniformity and the display quality of the display device is ensured. The pixel structure is particularly suitable to a large-size ultra-high-resolution display device.
Abstract:
The present disclosure provides a shift register unit, a gate driving circuit and a display apparatus. The shift register unit comprises: a first latch module having a first input terminal connected to a first clock signal terminal or a second clock signal terminal, a second input terminal for receiving a pulse signal, and an output terminal; and a second latch module having a first input terminal connected to the first clock signal terminal or the second clock signal terminal, a second input terminal connected to the output terminal of the first latch module, and an output terminal connected to a signal output terminal of the shift register unit. The first input terminal of the first latch module and the first input terminal of the second latch module are connected to the same signal terminal.
Abstract:
The present disclosure provides a data driving circuit and a driving method thereof, a data driving system and a display device. In an embodiment of a data driving circuit, each digital to analog conversion unit is only used for driving sub-pixels of one color, and by controlling on-off of the switch unit, one data line interface unit is enabled to be connected to different digital to analog conversion units when driving sub-pixels of different colors. In this way, a reference voltage can be provided to the digital to analog conversion unit for driving different color display by a single physical Gamma circuit, without having to use a digital Gamma circuit. Therefore, gray scale loss caused by adjustment using the digital Gamma circuit can be avoided fundamentally.
Abstract:
The present invention provides a pixel driving circuit and a driving method thereof, and a display device. The pixel driving circuit is used for driving a pixel array, wherein each pixel in the pixel array comprises four sub-pixels with different colors, and wherein the pixel driving circuit comprises: at least one first sub-pixel driving chip and at least one second sub-pixel driving chip, wherein the at least one first sub-pixel driving chip each is connected to a part of sub-pixels corresponding thereto in corresponding pixels to drive them, and the at least one second sub-pixel driving chip each is connected to the other part of sub-pixels corresponding thereto in the corresponding pixels to drive them. In the invention, noise interference can be avoided, and the display quality is improved; the cost is reduced; signal transmitting efficiency is increased and the EMI characteristic of products is improved.
Abstract:
The present invention provides a pixel unit driving circuit, a driving method and a display device. Wherein, the circuit comprises four TFT transistors and two capacitors. The display process is divided into three processes, which are a pre-charging phase, a compensation phase and a display phase. As compared with the conventional pixel structure, the nonuniformity and the shift of the threshold voltage of the depleted TFT or the enhanced TFT driving transistor, and the nonuniformity of the OLED voltage may be effectively compensated.
Abstract:
The present disclosure provides a method for adjusting gate driving voltages for a gate driving circuit, output terminals of the gate driving circuit being connected with gate lines, an input terminal of the gate driving circuit being connected with a propel link gate (PLG) wiring. The method includes determining a voltage-drop value at an electrical connection point along the PLG wiring with respect to an input terminal of the PLG wiring, the electrical connection point connecting an input terminal of the gate driving circuit with the input terminal of the PLG wiring; and compensating the gate driving voltage on the input terminal of the gate driving circuit based on the voltage-drop value.
Abstract:
An array substrate, a display panel and a repairing method thereof are provided. In the array substrate, except the last gate line, both ends of each of the remaining gate lines are provided respectively with first leads connected to the gate line; in each group of gate integrated drive circuits, except a first level shift register, an input terminal of every other shift register is provided with a second lead connected to the input terminal; the first lead connected to one of the gate lines and the second lead connected to an input terminal of the shift register at the next level adjacent thereto have an overlapping area (A) therebetween, and are insulated from each other.
Abstract:
The present invention relates to a heat sinking pad and a printed circuit board. The surface of the heat sinking pad on which electronic components are placed comprises a solder loading area and a solder non-loading area, wherein the solder loading area is used for being coated with solder; and the solder non-loading area comprises heat collection passages for collecting heat on the heat sinking pad and heat dissipation passages communicated with the heat collection passages. Openings of the heat dissipation passages are positioned at edges of the heat sinking pad so as to discharge the heat collected by the heat collection passages to the outside of the heat sinking pad. The heat dissipation to the edges of the heat sinking pad along the heat collection passages and the heat dissipation passages is faster than along the solder loading area, so the heat sinking pad has higher heat dissipation speed.
Abstract:
A driving method for preventing image sticking of a display panel (805) upon shutdown, and a display device (800). The method includes: receiving a shutdown signal (S01, S16); and adjusting driving signals of a sub-pixel circuit (708, 810) of the display panel (805), so as to reduce the voltage difference between a gate electrode and a source electrode of a driving transistor (T1) of the sub-pixel circuit, and hence allowing the display panel (805) to enter an image sticking prevention mode (S02, S17). The method can prevent image sticking of the display panel (805) at the time of shutdown and hence improve the display quality.