Abstract:
A test sensor includes a body, a first conductive trace, a second conductive trace, and a third conductive trace. The body includes a first region that has a fluid-receiving area, a second region separate from the first region, and a first temperature sensing interface disposed at or adjacent to the fluid-receiving area. The fluid-receiving area receives a sample. The first trace is disposed on the body, and at least a portion of the first trace is disposed in the first region. The second and third traces are disposed on the body. The third trace extends from the first to the second regions. The third trace is connected to the first trace at the first temperature sensing interface. The third trace includes a different material than the first trace. A first thermocouple is formed at the first temperature sensing interface. The thermocouple provides temperature data to determine an analyte concentration.
Abstract:
In some aspects, an analyte sensor is provided for detecting an analyte concentration level in a bio-fluid sample. The analyte sensor may include one or more conductors received in a hollow portion of a hollow member. The first conductor may be made, at least in part, of a semiconductor material and an active region may be provided in contact with at least the first conductor. The analyte sensor may, in one aspect, include a lancet and an integrated sensor. Manufacturing methods and apparatus and systems utilizing the analyte sensors are provided, as are numerous other aspects.
Abstract:
A test sensor includes a body, a first conductive trace, a second conductive trace, and a third conductive trace. The body includes a first region that has a fluid-receiving area, a second region separate from the first region, and a first temperature sensing interface disposed at or adjacent to the fluid-receiving area. The fluid-receiving area receives a sample. The first trace is disposed on the body, and at least a portion of the first trace is disposed in the first region. The second and third traces are disposed on the body. The third trace extends from the first to the second regions. The third trace is connected to the first trace at the first temperature sensing interface. The third trace includes a different material than the first trace. A first thermocouple is formed at the first temperature sensing interface. The thermocouple provides temperature data to determine an analyte concentration.
Abstract:
A test sensor includes a body, a first conductive trace, a second conductive trace, and a third conductive trace. The body includes a first region that has a fluid-receiving area, a second region separate from the first region, and a first temperature sensing interface disposed at or adjacent to the fluid-receiving area. The fluid-receiving area receives a sample. The first trace is disposed on the body, and at least a portion of the first trace is disposed in the first region. The second and third traces are disposed on the body. The third trace extends from the first to the second regions. The third trace is connected to the first trace at the first temperature sensing interface. The third trace includes a different material than the first trace. A first thermocouple is formed at the first temperature sensing interface. The thermocouple provides temperature data to determine an analyte concentration.
Abstract:
A test meter system for testing a characteristic of a fluid, the test meter system including a test meter having a housing with an opening adapted to accept a test strip, an interrogation coil within the housing, a pick-up coil within the housing, and a test strip including at least one magneto-elastic-resonance sensor. When the test strip is within the opening, the interrogation coil may utilize magneto-elastic-resonance technology to interrogate the magneto-elastic-resonance sensor and the pick-up coil may be used to sense a resultant oscillation frequency of the magneto-elastic-resonance sensor, the resultant oscillation frequency associated with the characteristic. The test strip may include a plurality of sensors. The sensors may be coated with a coating sensitive to a characteristic of the fluid, where the interrogation reveals information about the fluid characteristic.
Abstract:
A test sensor includes a body, a first conductive trace, a second conductive trace, and a third conductive trace. The body includes a first region that has a fluid-receiving area, a second region separate from the first region, and a first temperature sensing interface disposed at or adjacent to the fluid-receiving area. The fluid-receiving area receives a sample. The first trace is disposed on the body, and at least a portion of the first trace is disposed in the first region. The second and third traces are disposed on the body. The third trace extends from the first to the second regions. The third trace is connected to the first trace at the first temperature sensing interface. The third trace includes a different material than the first trace. A first thermocouple is formed at the first temperature sensing interface. The thermocouple provides temperature data to determine an analyte concentration.