Abstract:
Method for separating first type particles from a mixture of at least first type particles and second type particles, the method comprising contacting in a dispersion medium first type particles and second type particles with magnet type particles, so that in the dispersion medium first type particles agglomerate to magnet type particles to obtain magnetic agglomerates, separating magnetic agglomerates from second type particles by applying a magnetic field; wherein during step an amount of energy is transferred into a mixture of the dispersion medium, first type particles, second type particles and magnet type particles.
Abstract:
The present invention relates to a process for separating at least one first material from a mixture comprising this at least one first material and at least one second material, which comprises contacting of the mixture comprising at least one first material and at least one second material with at least one magnetic particle, or contacting of the mixture comprising at least one first material and at least one second material with at least one magnetic particle and at least one surface-modifying substance at the same time, contacting of the mixture from step (A) with at least one surface-modifying substance, if this has not been done in step (A), so that the at least one first material, the at least one surface-modifying substance and the at least one magnetic particle become attached to one another, and separation of the addition product by application of a magnetic field.
Abstract:
The present invention relates to core-shell-particles, wherein the core comprises at least one metal, or a compound thereof, or a mixture of at least one metal or a compound thereof and at least one semimetal or a compound thereof, and the shell comprises at least one silicon comprising polymer, to a process for the preparation of these core-shell-particles, to the use of these core-shell-particles in an agglomeration-deagglomeration process, in particular in chemical, physical or biological test methods or separation processes, decontamination processes, water purification, recycling of electrical/electronic scrap or gravity separation, and to a process for separating at least one first material from a mixture comprising this at least one first material and at least one second material.
Abstract:
The present invention relates to a process for the separation of at least one hydrophobic or hydrophobized material from a dispersion comprising said at least one hydrophobic or hydrophobized material and at least one second material. The process according to the present invention comprises the steps (A) to (D) which are described herein.
Abstract:
The present invention relates to a process for separating at least one first material from a mixture comprising this at least one first material and at least one second material, which comprises contacting of the mixture comprising at least one first material and at least one second material with at least one magnetic particle, or contacting of the mixture comprising at least one first material and at least one second material with at least one magnetic particle and at least one surface-modifying substance at the same time, contacting of the mixture from step (A) with at least one surface-modifying substance, if this has not been done in step (A), so that the at least one first material, the at least one surface-modifying substance and the at least one magnetic particle become attached to one another, and separation of the addition product by application of a magnetic field.
Abstract:
The present invention relates to a porous inorganic body comprising pores A having a pore size SA in the range of from 0.005 to 20 micrometer and a total pore volume VA, and comprising pores B having a pore size SB in the range of from more than 20 to 1000 micrometer and a total pore volume VB, wherein the total pore volume of the pores having a pore size in the range of from 0.005 to 1000 micrometer is VC and wherein the ratio RA=VA/VC is in the range of from 0.3 to 0.7 as determined via mercury intrusion porosimetry.
Abstract translation:本发明涉及一种多孔无机体,其包含孔尺寸SA在0.005至20微米范围内的孔A和总孔体积VA,并且包含孔径SB在大于20的范围内的孔B 至1000微米和总孔体积VB,其中孔径在0.005至1000微米范围内的孔的总孔体积为VC,其中RA = VA / VC的比率在0.3至 0.7通过汞侵入孔隙率法测定。
Abstract:
The present invention relates to a process for the separation of at least one valuable matter containing material from a dispersion comprising said at least one valuable matter containing material and at least one second material. The process according to the present invention comprises at least the steps (A) to (E) and the optional steps (F) to (H) which are described herein.
Abstract:
The present invention relates to a porous inorganic body comprising pores A having a pore size SA in the range of from 0.005 to 20 micrometer and a total pore volume VA, and comprising pores B having a pore size SB in the range of from more than 20 to 1000 micrometer and a total pore volume VB, wherein the total pore volume of the pores having a pore size in the range of from 0.005 to 1000 micrometer is VC and wherein the ratio RA=VA/VC is in the range of from 0.3 to 0.7 as determined via mercury intrusion porosimetry.
Abstract translation:本发明涉及一种多孔无机体,其包含孔尺寸SA在0.005至20微米范围内的孔A和总孔体积VA,并且包含孔径SB在大于20的范围内的孔B 至1000微米和总孔体积VB,其中孔径在0.005至1000微米范围内的孔的总孔体积为VC,其中RA = VA / VC的比率在0.3至 0.7通过汞侵入孔隙率法测定。