Abstract:
A process for the production of propylene, the process including: contacting ethylene and a hydrocarbon stream comprising 1-butene and 2-butene with a bifunctional isomerization-metathesis catalyst to concurrently isomerizes 1-butene to 2-butene and to form a metathesis product comprising propylene; wherein the bifunctional isomerization-metathesis catalyst comprises: a catalyst compound may include at least one element selected from tungsten, tantalum, niobium, molybdenum, nickel, palladium, osmium, iridium, rhodium, vanadium, ruthenium, and rhenium for providing metathesis activity on a support comprising at least one element from Group IA, IIA, IIB, and IIIA of the Periodic Table of the Elements; wherein an exposed surface area of the support provides both isomerization activity for the isomerization of 1-butene to 2-butene; and reactive sites for the adsorption of catalyst compound poisons. In other embodiments, the catalyst compound may include at least one element selected from aluminum, gallium, iridium, iron, molybdenum, nickel, niobium, osmium, palladium, phosphorus, rhenium, rhodium, ruthenium, tantalum, titanium, tungsten, and vanadium.
Abstract:
A process for the production of propylene, the process including: contacting ethylene and a hydrocarbon stream comprising 1-butene and 2-butene with a bifunctional isomerization-metathesis catalyst to concurrently isomerizes 1-butene to 2-butene and to form a metathesis product comprising propylene; wherein the bifunctional isomerization-metathesis catalyst comprises: a catalyst compound may include at least one element selected from tungsten, tantalum, niobium, molybdenum, nickel, palladium, osmium, iridium, rhodium, vanadium, ruthenium, and rhenium for providing metathesis activity on a support comprising at least one element from Group IA, IIA, IIB, and IIIA of the Periodic Table of the Elements; wherein an exposed surface area of the support provides both isomerization activity for the isomerization of 1-butene to 2-butene; and reactive sites for the adsorption of catalyst compound poisons. In other embodiments, the catalyst compound may include at least one element selected from aluminum, gallium, iridium, iron, molybdenum, nickel, niobium, osmium, palladium, phosphorus, rhenium, rhodium, ruthenium, tantalum, titanium, tungsten, and vanadium.
Abstract:
A process for the double-bond isomerization of olefins is disclosed. The process may include contacting a hydrocarbon stream including olefins with a γ-alumina-titania isomerization catalyst to convert at least a portion of the olefin to its positional isomer. The γ-alumina-titanic isomerization catalysts disclosed herein may also have the activity to convert alcohol into additional olefins, while having increased resistance to oxygenate poisons.
Abstract:
A process for producing propylene is disclosed, including: fractionating a mixed C4 hydrocarbon stream to recover a first fraction comprising isobutene and a second fraction comprising 2-butene; contacting the first fraction with a first metathesis catalyst in a first metathesis reaction zone; recovering an effluent from the first metathesis reaction zone comprising at least one of ethylene, propylene, unreacted isobutene, C5 olefins, and C6 olefins; contacting the second fraction and the ethylene in the effluent with a second metathesis catalyst in a second metathesis reaction zone; recovering an effluent from the second reaction zone comprising at least one of unreacted ethylene, propylene, unreacted 2-butene, fractionating the effluent from the first metathesis reaction zone and the effluent from the second metathesis reaction zone to recover an ethylene fraction, a propylene fraction, one or more C4 fractions, and a fraction comprising at least one of C5 and C6 olefins.
Abstract:
A process for the double-bond isomerization of olefins is disclosed. The process may include contacting a fluid stream comprising olefins with a fixed bed comprising an activated basic metal oxide isomerization catalyst to convert at least a portion of the olefin to its isomer. The isomerization catalysts disclosed herein may have a reduced cycle to cycle deactivation as compared to conventional catalysts, thus maintaining higher activity over the complete catalyst life cycle.
Abstract:
A process for the double-bond isomerization of olefins is disclosed. The process may include contacting a hydrocarbon stream including olefins with a γ-alumina-titania isomerization catalyst to convert at least a portion of the olefin to its positional isomer. The γ-alumina-titania isomerization catalysts disclosed herein may also have the activity to convert alcohol into additional olefins, while having increased resistance to oxygenate poisons.
Abstract:
A process for the double-bond isomerization of olefins is disclosed. The process may include contacting a hydrocarbon stream including olefins with a γ-alumina-titania isomerization catalyst to convert at least a portion of the olefin to its positional isomer. The γ-alumina-titania isomerization catalysts disclosed herein may also have the activity to convert alcohol into additional olefins, while having increased resistance to oxygenate poisons.
Abstract:
A process for the double-bond isomerization of olefins is disclosed. The process may include contacting a fluid stream comprising olefins with a fixed bed comprising an activated basic metal oxide isomerization catalyst to convert at least a portion of the olefin to its isomer. The isomerization catalysts disclosed herein may have a reduced cycle to cycle deactivation as compared to conventional catalysts, thus maintaining higher activity over the complete catalyst life cycle.
Abstract:
Disclosed herein is a process for producing an alpha olefin comprising obtaining a feed stream comprising an internal olefin having a first carbon number and an alpha olefin having a first carbon number, isomerizing the feed stream to increase the quantity of the alpha olefin, fractionating, subjecting the overhead material from fractionation to catalytic metathesis to produce a mixed olefin effluent comprising an internal olefin having a second carbon number and other hydrocarbons, fractionating, preparing the first isomerization reactor and fractionator to receive the olefin having a second carbon number, isomerizing the internal olefin intermediate in the prepared first isomerization reactor, and fractionating the second isomerization effluent in the prepared first fractionator to separate the alpha olefin having the second carbon number from the internal olefin having the second carbon number. A corresponding system also is disclosed, along with a heat pump that can be incorporated into the process.
Abstract:
Disclosed herein is a process for producing an alpha olefin comprising obtaining a feed stream comprising an internal olefin having a first carbon number and an alpha olefin having a first carbon number, isomerizing the feed stream to increase the quantity of the alpha olefin, fractionating, subjecting the overhead material from fractionation to catalytic metathesis to produce a mixed olefin effluent comprising an internal olefin having a second carbon number and other hydrocarbons, fractionating, preparing the first isomerization reactor and fractionator to receive the olefin having a second carbon number, isomerizing the internal olefin intermediate in the prepared first isomerization reactor, and fractionating the second isomerization effluent in the prepared first fractionator to separate the alpha olefin having the second carbon number from the internal olefin having the second carbon number. A corresponding system also is disclosed, along with a heat pump that can be incorporated into the process.