Abstract:
An apparatus and method of manufacture for metal-oxide semiconductor (MOS) transistors is disclosed. Devices in accordance with the invention are operable at voltages below 2V. The devices are area efficient, have improved drive strength, and have reduced leakage current. A dynamic threshold voltage control scheme comprised of a forward biased diode in parallel with a capacitor is used, implemented without changing the existing MOS technology process. This scheme controls the threshold voltage of each transistor. In the OFF state, the magnitude of the threshold voltage of the transistor increases, keeping the transistor leakage to a minimum. In the ON state, the magnitude of the threshold voltage decreases, resulting in increased drive strength. The invention is particularly useful in MOS technology for both bulk and silicon on insulator (SOI) CMOS. The use of reverse biasing of the well, in conjunction with the above construct to further decrease leakage in a MOS transistor, is also shown.
Abstract:
An apparatus and method of manufacture for metal-oxide semiconductor (MOS) transistors is disclosed. Devices in accordance with the invention are operable at voltages below 2V. The devices are area efficient, have improved drive strength, and have reduced leakage current. A dynamic threshold voltage control scheme comprised of a forward biased diode in parallel with a capacitor is used, implemented without changing the existing MOS technology process. This scheme controls the threshold voltage of each transistor. In the OFF state, the magnitude of the threshold voltage of the transistor increases, keeping the transistor leakage to a minimum. In the ON state, the magnitude of the threshold voltage decreases, resulting in increased drive strength. The invention is particularly useful in MOS technology for both bulk and silicon on insulator (SOI) CMOS. The use of reverse biasing of the well, in conjunction with the above construct to further decrease leakage in a MOS transistor, is also shown.
Abstract:
Metal-oxide semiconductor (MOS) transistors that are operable at voltages below 1.5V, that are area efficient, and that exhibit improved drive strength and leakage current that are disclosed. A dynamic threshold voltage control scheme is used that does not require a change to existing MOS technology processes. Threshold voltage of the transistor is controlled, such that in the Off state, the threshold voltage of the transistor is set high, keeping the transistor leakage to a small value. The advantages provided by apply to dynamic logic, as well as in the specific well separation imposed by design rules because well potential difference are lower than the supply voltage swing.
Abstract:
An apparatus and method of manufacture for metal-oxide semiconductor (MOS) transistors is disclosed. Devices in accordance with the invention are operable at voltages below 2V. The devices are area efficient, have improved drive strength, and have reduced leakage current. A dynamic threshold voltage control scheme comprised of a forward biased diode in parallel with a capacitor is used, implemented without changing the existing MOS technology process. This scheme controls the threshold voltage of each transistor. In the OFF state, the magnitude of the threshold voltage of the transistor increases, keeping the transistor leakage to a minimum. In the ON state, the magnitude of the threshold voltage decreases, resulting in increased drive strength. The invention is particularly useful in MOS technology for both bulk and silicon on insulator (SOI) CMOS. The use of reverse biasing of the well, in conjunction with the above construct to further decrease leakage in a MOS transistor, is also shown.
Abstract:
Metal-oxide semiconductor (MOS) transistors that are operable at voltages below 1.5V, that are area efficient, and that exhibit improved drive strength and leakage current that are disclosed. A dynamic threshold voltage control scheme is used that does not require a change to existing MOS technology processes. Threshold voltage of the transistor is controlled, such that in the Off state, the threshold voltage of the transistor is set high, keeping the transistor leakage to a small value. The advantages provided by apply to dynamic logic, as well as in the specific well separation imposed by design rules because well potential difference are lower than the supply voltage swing.
Abstract:
An apparatus and method of manufacture for metal-oxide semiconductor (MOS) transistors is disclosed. Devices in accordance with the invention are operable at voltages below 2V. The devices are area efficient, have improved drive strength, and have reduced leakage current. A dynamic threshold voltage control scheme comprised of a forward biased diode in parallel with a capacitor is used, implemented without changing the existing MOS technology process. This scheme controls the threshold voltage of each transistor. In the OFF state, the magnitude of the threshold voltage of the transistor increases, keeping the transistor leakage to a minimum. In the ON state, the magnitude of the threshold voltage decreases, resulting in increased drive strength. The invention is particularly useful in MOS technology for both bulk and silicon on insulator (SOI) CMOS. The use of reverse biasing of the well, in conjunction with the above construct to further decrease leakage in a MOS transistor, is also shown.
Abstract:
An air cooled sunshade constructed to provide cooling under the canopy of the sunshade. The foldable canopy of the sunshade includes a plurality of segments of elongated panels having embedded solar panels and a plurality of segments of pliable material to allow the canopy to easily stretch when in the open position and collapse in the closed position, typically arranged having one elongated panel connected on foldable material segment arranged around a center piece. In an embodiment disclosed herein, the pliable material is formed as a pipe having an upper layer and a lower layer, the lower layer having pores through which air can flow to the area under the canopy. The air can then flow from a fan or an air conditioner mounted on the center piece and allowing air to flow evenly under the canopy. The solar panels are connected to provide the necessary energy.
Abstract:
Techniques are described for switching from a data session to a voice session, then back to the data session. A "primary" data connection is established between a user's terminal and a communications network, which provides the user terminal with a tag identifying a voice network address (typically of a service provider) to which a voice connection can be established. The user initiates a voice connection (session) with the service provider by selecting a displayed service object associated with the service tag. During the voice session, the data session is suspended. Upon completion of the voice session, the "primary" data session is resumed. In an embodiment of the invention, a "secondary" data connection can be established during the voice session using one or more physical network connections. Data communication during the secondary data connection is optionally "remotely" guided by the service provider, and may include a distinct address for resuming the primary data connection. Video connections are accommodated during the voice session.
Abstract:
A microprocessor architecture that includes capabilities for locking individual entries into its integrated instruction cache and data cache while leaving the remainder of the cache unlocked and available for use in capturing the microprocessor's dynamic locality of reference. The microprocessor also includes the capability for locking instruction cache entries without requiring that the instructions be executed during the locking process.