Abstract:
Electrical shield line systems are provided for openings in common electrodes near data lines of display and touch screens. Some displays, including touch screens, can include multiple common electrodes (Vcom) that can have openings between individual Vcoms. Some display screens can have an open slit between two adjacent edges of Vcom. Openings in Vcom can allow an electric field to extend from a data line through the Vcom layer. A shield can be disposed over the Vcom opening to help reduce or eliminate an electric field from affecting a pixel material, such as liquid crystal. The shield can be connected to a potential such that electric field is generated substantially between the shield and the data line to reduce or eliminate electric fields reaching the liquid crystal.
Abstract:
Acoustic touch and/or force sensing system architectures and methods for acoustic touch and/or force sensing can be used to detect a position of an object touching a surface and an amount of force applied to the surface by the object. The position and/or an applied force can be determined using time-of-flight (TOF) techniques, for example. Acoustic touch sensing can utilize transducers (e.g., piezoelectric) to simultaneously transmit ultrasonic waves along a surface and through a thickness of a deformable material. The location of the object and the applied force can be determined based on the amount of time elapsing between the transmission of the waves and receipt of the reflected waves. In some examples, an acoustic touch sensing system can be insensitive to water contact on the device surface, and thus acoustic touch sensing can be used for touch sensing in devices that may become wet or fully submerged in water.
Abstract:
The present disclosure relates to one or more intermediate layers located on a surface of a cover material of an acoustic touch screen. In some examples, the one or more layers can include one or more intermediate layers. The one or more intermediate layers can include a first layer including a plurality of features and a second layer located between the first layer and the cover material. In a touch condition, the touch object can apply a force to the top surface of the acoustic touch sensor. The applied force can create one or more local bends causing the plurality of features to move closer to the cover material and causing one or more surface discontinuities in the cover material. The acoustic waves can undergo reflections (e.g., causing the signal to be attenuated) due to the discontinuities located in the path of the wave propagation.
Abstract:
An electronic device that includes an enclosure having an external surface and a first array of ultrasonic transducers arranged along a first direction and a second array of ultrasonic transducers arranged along a second direction. The first array of ultrasonic transducers may be configured to produce a surface wave along the external surface. A set of scattered waves may be created by the touch on the external surface. The second array of ultrasonic transducers may be configured to receive a portion of the set of scattered waves and produce an output. The device may also include a processing unit that is configured to identify the touch using the output. The processing unit may be further configured to create a reconstruction of at least a portion of a fingerprint associated with the touch on the cover, and to identify the fingerprint using the reconstruction.
Abstract:
A fingerprint sensor is incorporated in a display stack in an electronic device. A single fingerprint can be captured at one time at a single pre-defined fixed location on a display. Alternatively, a single fingerprint can be acquired at one time at any location on a display. Alternatively, multiple touches on the display can be acquired substantially simultaneously where only one fingerprint is captured at a time or where all of the fingerprints are acquired at the same time. The fingerprint sensor can be implemented as an integrated circuit connected to a bottom surface of a cover sheet, near the bottom surface of the cover sheet, or connected to a top surface of a display. Alternatively, the fingerprint sensor can be implemented as a full panel fingerprint sensor.
Abstract:
Touch sensitive displays are disclosed that can include circuitry that is segmented into multiple portions that can be independently operated. Touch sensitive display circuitry can be split in half with an upper portion and a lower portion that can each be independently operated. The separate circuitry portions can be used for performing display operations and for performing touch sensing operations. Display operations can be performed in one portion of the display while touch sensing operations are simultaneously performed in another portion of the display. Periodically, the operation being performed in a given portion of the display can be switched so as to alternatingly update that portion of the display and sense touch events in that region.
Abstract:
Systems, methods, and devices to control a transistor to maintain one or more substantially constant characteristics while activated or deactivated are provided. One such system includes a transistor that receives an activation signal on a gate terminal to become activated during a first period and receives a deactivation signal on the gate terminal to become deactivated during a second period. The transistor receives an input signal on an input terminal during the first period and the second period. The input signal varies during the first period and during the second period. The transistor may have improved reliability (e.g., substantially constant on resistance RON) because a first difference between the input signal and the activation signal substantially does not vary during the first period and a second difference between the input signal and the deactivation signal substantially does not vary during the second period.
Abstract:
A touch input device configured to maintain system performance despite a changing master clock frequency is provided. The touch input device includes one or more agile clocking dynamic scaling engines that can detect changes in the frequency of the master clock and can scale parameters of the touch controller associated with touch detection such that time domain to maintain uniform system performance.
Abstract:
A display having data lines that can be configured between a display mode and a touch mode is disclosed. The display can have sense regions for sensing a touch or near touch on the display during the touch mode. These same regions can display graphics or data on the display during the display mode. During display mode, the data lines in the sense regions can be configured to couple to display circuitry in order to receive data signals from the circuitry for displaying. During touch mode, the data lines in the sense regions can be configured to couple to corresponding sense lines in the regions, which in turn can couple to touch circuitry, in order to transmit touch signals to the circuitry for sensing a touch or near touch. Alternatively, during touch mode, the data lines in the sense regions can be configured to couple to ground in order to transmit residual data signals to ground for discarding.
Abstract:
Embodiments described herein generally take the form of methods and systems for identifying and/or reducing a parasitic capacitance variation in a capacitive integrated touch-sensing module that may arise from proximity to a nearby electronic display.