Abstract:
A wireless user equipment (UE) device may include a receiver and transmitter. The UE device may dynamically vary the fidelity requirements imposed on the analog signal processing performed by the receiver and/or the transmitter in response factors such as: amount of signal interference (e.g., out-of-band signal power); modulation and coding scheme; number of spatial streams; extent of transmitter leakage; and size and/or frequency location of resources allocated to the UE device. Thus, the UE device may consume less power on average than a UE device that is designed to satisfy fixed fidelity requirements associated with a worst case reception scenario and/or a worst case transmission scenario.
Abstract:
An apparatus, system, and method for performing PDCCH preparation in RF circuitry are described. In one embodiment, power may be provided to a crystal oscillator to exit a first sleep state. One or more clocking signals may be provided to RF circuitry based on output from the crystal oscillator. Calibration and state restoration of the RF circuitry may be performed independent of baseband circuitry. A plurality of algorithms to prepare for receiving data form a wireless communication network may be performed independent of the baseband circuitry. After initiating the plurality of algorithms, state restoration of the baseband circuitry may be performed. Data may be received from a wireless communication network using the RF circuitry. The data may be processed using the baseband circuitry. State retention for the RF circuitry and the baseband circuitry may be performed. Finally, the crystal oscillator may be powered down to enter a second sleep state.
Abstract:
This disclosure relates to a system and method for generating single-carrier frequency division multiple access (SC-FDMA) transmissions using a high efficiency architecture. According to some embodiments, frequency resources allocated for a transmission may be determined. The allocated frequency resources may have a bandwidth less than a channel bandwidth of a frequency channel of the transmission, and may be centered around a particular frequency. The frequency may be offset from the center frequency of the channel. A baseband signal located around DC corresponding to the channel center frequency may be generated. The baseband signal may be up-converted to an RF signal using a local oscillator tuned to the frequency around which the allocated frequency resources are centered. The RF signal may be transmitted.
Abstract:
Techniques are disclosed relating to DC interference cancelation in received wireless signals. Disclosed techniques may be performed in the digital domain, in conjunction with analog cancelation techniques. In some embodiments, a receiver apparatus operates a local oscillator at a frequency corresponding to a particular pilot symbol in a received wireless signal. In some embodiments the receiver estimates DC interference at the frequency based on the received pilot symbol (this may be facilitated by the fact that the contents of pilot symbols are known, because they are typically used for channel estimation). In some embodiments, the receiver apparatus is configured to cancel the DC interference based on the estimate to determine received data in subsequently received signals at the frequency. Disclosed techniques may allow narrowband receivers to efficiently use more of their allocated frequency bandwidth, rather than wasting bandwidth near the frequency of the local oscillator.
Abstract:
A wireless user equipment (UE) device may include a receiver and transmitter. The UE device may dynamically vary the fidelity requirements imposed on the analog signal processing performed by the receiver and/or the transmitter in response factors such as: amount of signal interference (e.g., out-of-band signal power); modulation and coding scheme; number of spatial streams; extent of transmitter leakage; and size and/or frequency location of resources allocated to the UE device. Thus, the UE device may consume less power on average than a UE device that is designed to satisfy fixed fidelity requirements associated with a worst case reception scenario and/or a worst case transmission scenario.
Abstract:
An interface circuit in an electronic device may receive samples of wireless signals in one or more time intervals, where the wireless signals are associated with the second electronic device. For example, the samples of the wireless signals may include one or more of: time samples, spatial samples and/or frequency samples. Then, the interface circuit may split the samples of the wireless signals into parallel channels for sub-band processing that improves a resolution and/or a signal-to-noise ratio of the samples of the wireless signals. The sub-band processing may include filtering and decimation. Moreover, the sub-band processing may include a super-resolution technique, such as a multiple signal classification (MUSIC) technique and/or a linear-prediction super-resolution technique. Next, the interface circuit may combine outputs from the parallel channels to estimate a time of arrival of the wireless signals and/or a distance between the electronic device and the second electronic device.
Abstract:
Methods and devices are provided for processing a received communication signal by a UE using an analog complex filter and using a single analog-to-digital converter (ADC). A control channel of the communication signal may be decoded to determine the frequency range in which a payload channel is located. The UE may then demodulate only the frequency range containing the payload channel. A complex representation of the received payload channel may be provided to the analog complex filter, with the payload channel shifted to a non-zero frequency IF. The analog complex filter may attenuate any portion of the complex representation that falls near −IF. The UE may then convert only one component path of the filtered complex representation to a digital signal. A complex representation of the digital signal may then be generated, with the payload channel shifted to DC.
Abstract:
Power allocation for encoded bits in OFDM systems. OFDM symbol subcarriers may be allocated to a wireless user equipment (UE) device by a base station. A first portion of the allocated subcarriers may include systematic bits and a second portion of the allocated subcarriers may include parity bits according to a coding scheme. Transmit power may be unevenly allocated to the subcarriers allocated to the UE, such that subcarriers including systematic bits are allocated different power than the subcarriers including parity bits. The OFDM symbols including the subcarriers allocated to the UE may be transmitted to the UE by the base station according to the allocated power distribution.
Abstract:
An apparatus, system, and method for performing PDCCH preparation in RF circuitry are described. In one embodiment, power may be provided to a crystal oscillator to exit a first sleep state. One or more clocking signals may be provided to RF circuitry based on output from the crystal oscillator. Calibration and state restoration of the RF circuitry may be performed independent of baseband circuitry. A plurality of algorithms to prepare for receiving data form a wireless communication network may be performed independent of the baseband circuitry. After initiating the plurality of algorithms, state restoration of the baseband circuitry may be performed. Data may be received from a wireless communication network using the RF circuitry. The data may be processed using the baseband circuitry. State retention for the RF circuitry and the baseband circuitry may be performed. Finally, the crystal oscillator may be powered down to enter a second sleep state.
Abstract:
A transceiver device may include a transmit path that generates a modulated transmit signal based on a baseband signal, and a receive path that receives a receive signal, which is subject to third-order order distortion caused by intermodulation noise resulting from a continuous wave blocker intermodulating with transmit leakage from the transmit path. The transceiver may also include a compensation path that models portions of the transmit path and the receive path, and generates a replica signal representative of the third-order order distortion according to at least a specified function and the modeled portions of the transmit path and the receive path. The compensation path also filters the replica signal and subtracts the filtered replica signal from the receive signal to eliminate the third-order order distortion caused by the intermodulation noise. The filtering of the replica signal may be performed by programmable finite impulse response filters.