Abstract:
Multi-radio wireless network devices are capable of transmitting and/or receiving data from multiple radiofrequency (RF) networks at different bands. Total transmission power limitations may be in place due to, for example, safety reasons. As a result, active management of transmission power may be performed during simultaneous transmission in different bands and/or networks. In some embodiments, the management may take place on group-by-group basis and a network-by-network basis. Antennas may be grouped based on their relative positions and impact on radiation emitted by the devices.
Abstract:
In an example method, a mobile device connects a voice call for a user. The voice call causes one or more radio frequency transmitters of the mobile device to transmit radio waves at a first power level. Motion data describing movement of the mobile device is obtained, and the orientation of the mobile device is determined based on the motion data. A determination whether the mobile device is on the user's body or on an inanimate object is made based on the orientation of the mobile device over the period of time. The transmit power level is adjusted based on the determination.
Abstract:
Multi-radio wireless network devices are capable of transmitting and/or receiving data from multiple radiofrequency (RF) networks at different bands. Total transmission power limitations may be in place due to, for example, safety reasons. As a result, active management of transmission power may be performed during simultaneous transmission in different bands and/or networks. In some embodiments, the management may take place on group-by-group basis and a network-by-network basis. Antennas may be grouped based on their relative positions and impact on radiation emitted by the devices.
Abstract:
Multi-radio wireless network devices are capable of transmitting and/or receiving data from multiple radiofrequency (RF) networks at different bands. Total transmission power limitations may be in place due to, for example, safety reasons. As a result, active management of transmission power may be performed during simultaneous transmission in different bands and/or networks. In some embodiments, the management may take place on group-by-group basis and a network-by-network basis. Antennas may be grouped based on their relative positions and impact on radiation emitted by the devices.
Abstract:
In an example method, a mobile device connects a voice call for a user. The voice call causes one or more radio frequency transmitters of the mobile device to transmit radio waves at a first power level. Motion data describing movement of the mobile device is obtained, and the orientation of the mobile device is determined based on the motion data. A determination whether the mobile device is on the user's body or on an inanimate object is made based on the orientation of the mobile device over the period of time. The transmit power level is adjusted based on the determination.
Abstract:
An electronic device may be provided with wireless circuitry for transmitting and receiving wireless signals. Control circuitry may be used to adjust transmit power levels for the wireless signals and other settings for the wireless circuitry. The electronic device may be operated in conjunction with an external accessory. The accessory may be equipment that includes a dock connector, a case to enclose the electronic device, equipment that is coupled to the electronic device using a cable, or other external electronic equipment. An identifier may be stored in the accessory. The impact of the accessory on the wireless performance of the electronic device may be characterized and associated with the identifier. During operation of the electronic device, the electronic device may adjust transmit power levels and other settings based on the identifier of the accessory and based on sensor data, user input, and other information.
Abstract:
An electronic device may be provided with wireless circuitry for transmitting and receiving wireless signals. Control circuitry may be used to adjust transmit power levels for the wireless signals and other settings for the wireless circuitry. The electronic device may be operated in conjunction with an external accessory. The accessory may be equipment that includes a dock connector, a case to enclose the electronic device, equipment that is coupled to the electronic device using a cable, or other external electronic equipment. An identifier may be stored in the accessory. The impact of the accessory on the wireless performance of the electronic device may be characterized and associated with the identifier. During operation of the electronic device, the electronic device may adjust transmit power levels and other settings based on the identifier of the accessory and based on sensor data, user input, and other information.