Abstract:
An electronic device may be provided with wireless circuitry that includes antennas. An antenna may be formed from metal traces on a dielectric antenna carrier. The antenna carrier may be formed by molding a layer of plastic onto the surface of a foam member. The foam member may have a low dielectric constant to enhance antenna performance and may be formed from a stiff closed cell plastic foam material. Heat and pressure may be used to attach the layer of plastic to the surface of the foam member without adhesive. A laser may be used to selectively expose portions of the plastic layer to laser light. The plastic layer may include additives that sensitize the plastic layer to light exposure. Electroplated metal traces for the antenna may be formed on the exposed portions of the plastic layer while leaving other portions of the plastic layer uncovered with metal.
Abstract:
Damage to conductive material that serves as bridging connections between conductive structures within an electronic device may result in deficiencies in radio-frequency (RF) and other wireless communications. A test system for testing device structures under test is provided. Device structures under test may include substrates and a conductive material between the substrates. The test system may include a test fixture for increasing tensile or compressive stress on the device structures under test to evaluate the resilience of the conductive material. The test system may also include a test unit for transmitting RF test signals and receiving test data from the device structures under test. The received test data may include scattered parameter measurements from the device structures under test that may be used to determine if the device structures under test meet desired RF performance criteria.
Abstract:
An antenna with a curved shape may be mounted behind a curved antenna window. The antenna may have an antenna resonating element such as an inverted-F antenna resonating element and may have an antenna ground. The antenna resonating element may be formed from patterned metal traces on a flexible printed circuit. The flexible printed circuit may have ground traces that run along a peripheral edge of the flexible printed circuit. The antenna ground may be formed from a metal can with walls surrounding a cavity having an opening. The metal can may have a lip formed from bent portions of the walls. The flexible printed circuit may be soldered to the lip so that the ground traces are shorted to the can. A cable connector may be mounted on a bent tab in the flexible printed circuit that extends through a notch in the lip.
Abstract:
A test system may include a master test station and slave test stations. The test stations may receive devices under test such as portable wireless electronic devices. Each test station may have adjustable antenna structures coupled to test equipment. The adjustable antenna structures may include antenna support structures on which test antennas are mounted and rail along which the antenna support structures and test antennas are moved by a pneumatic positioner. A rotatable platform may be provided in each test station to support the device under test in that test station. By making a series of over-the-air test measurements in the master test station while adjusting the antenna system and device positioning system, a satisfactory location for the active test antenna and device position may be identified. This configuration may then be used in performing single-point over-the-air tests in the slave test stations.
Abstract:
Damage to conductive material that serves as bridging connections between conductive structures within an electronic device may result in deficiencies in radio-frequency (RF) and other wireless communications. A test system for testing device structures under test is provided. Device structures under test may include substrates and a conductive material between the substrates. The test system may include a test fixture for increasing tensile or compressive stress on the device structures under test to evaluate the resilience of the conductive material. The test system may also include a test unit for transmitting RF test signals and receiving test data from the device structures under test. The received test data may include scattered parameter measurements from the device structures under test that may be used to determine if the device structures under test meet desired RF performance criteria.
Abstract:
Electronic devices may include radio-frequency transceiver circuitry and antenna structures. The antenna structures may include a dielectric carrier such as a foam carrier. The foam carrier may be formed from a material that can withstand elevated temperatures. Metal traces for antennas can be formed on the foam carrier by selectively activating areas on a powder coating with a laser and plating the laser-activated areas. Metal for the antennas may also be formed by attaching layers such as flexible printed circuit layers and metal foil layers to the foam carrier. Solder may be used to attach a coaxial cable or other transmission line, electrical components, and other electrical structures to the metal antenna structures on the foam carrier. The foam carrier may be formed from open cell or closed cell foam. The surface of the foam may be smoothed to facilitate formation of metal antenna structures.
Abstract:
Electronic devices may include radio-frequency transceiver circuitry and antenna structures. The antenna structures may include a dielectric carrier such as a foam carrier. The foam carrier may be formed from a material that can withstand elevated temperatures. Metal traces for antennas can be formed on the foam carrier by selectively activating areas on a powder coating with a laser and plating the laser-activated areas. Metal for the antennas may also be formed by attaching layers such as flexible printed circuit layers and metal foil layers to the foam carrier. Solder may be used to attach a coaxial cable or other transmission line, electrical components, and other electrical structures to the metal antenna structures on the foam carrier. The foam carrier may be formed from open cell or closed cell foam. The surface of the foam may be smoothed to facilitate formation of metal antenna structures.
Abstract:
A test system may include a master test station and slave test stations. The test stations may receive devices under test such as portable wireless electronic devices. Each test station may have adjustable antenna structures coupled to test equipment. The adjustable antenna structures may include antenna support structures on which test antennas are mounted and rail along which the antenna support structures and test antennas are moved by a pneumatic positioner. A rotatable platform may be provided in each test station to support the device under test in that test station. By making a series of over-the-air test measurements in the master test station while adjusting the antenna system and device positioning system, a satisfactory location for the active test antenna and device position may be identified. This configuration may then be used in performing single-point over-the-air tests in the slave test stations.
Abstract:
A test system may include a wireless test chamber with metal walls lined with pyramidal absorbers. A trapdoor may be provided in a wall opening to accommodate a robotic arm. The robotic arm may have grippers that grip a device under test or a support structure that is supporting a device under test. The robotic arm may move the device under test to a docking station for automatic battery charging during testing. When it is desired to perform wireless tests on a device under test, the robotic arm may move the device under test through the trapdoor into an interior portion of the test chamber. A turntable and movable test antenna may be used to rotate the device under test while varying angular orientations between test antenna and device under test. Emitted radiation levels can be measured using a liquid filled phantom and test probe on a robotic arm.
Abstract:
An electronic device may be provided with wireless circuitry that includes antennas. An antenna may be formed from metal traces on a dielectric antenna carrier. The antenna carrier may be formed by molding a layer of plastic onto the surface of a foam member. The foam member may have a low dielectric constant to enhance antenna performance and may be formed from a stiff closed cell plastic foam material. Heat and pressure may be used to attach the layer of plastic to the surface of the foam member without adhesive. A laser may be used to selectively expose portions of the plastic layer to laser light. The plastic layer may include additives that sensitize the plastic layer to light exposure. Electroplated metal traces for the antenna may be formed on the exposed portions of the plastic layer while leaving other portions of the plastic layer uncovered with metal.