摘要:
In order to make it possible to direct sufficient microwave energy at a target with an electronic device which is to be interfered with or to be destroyed, the beams (7) from at least two antenna arrays (10) are focused on an effective area (8) in the vicinity of that target, preferably from a vehicle (3) which is equipped with these arrays (10). For effective super-imposition of the emitted microwave energy (7) in the emission direction of in each case one of the arrays (10), the use of an arc for discharging the capacitance (43) of the resonator via its spark gap (13) is observed, and is recorded quasi-continuously optoelectronically. The electrode separation of the spark gap (13) or the fluid pressure of the dielectric in the vicinity of the spark gap (13) is then varied by control elements such that all of the spark gaps (13) in an array (10) ignite virtually at the same time, so that their discharge current pulses which lead to the emission of the microwave energy (7) start virtually in phase.
摘要:
In order to make it possible to direct sufficient microwave energy at a target with an electronic device which is to be interfered with or to be destroyed, the beams (7) from at least two antenna arrays (10) are focused on an effective area (8) in the vicinity of that target, preferably from a vehicle (3) which is equipped with these arrays (10). For effective super-imposition of the emitted microwave energy (7) in the emission direction of in each case one of the arrays (10), the use of an arc for discharging the capacitance (43) of the resonator via its spark gap (13) is observed, and is recorded quasi-continuously optoelectronically. The electrode separation of the spark gap (13) or the fluid pressure of the dielectric in the vicinity of the spark gap (13) is then varied by control elements such that all of the spark gaps (13) in an array (10) ignite virtually at the same time, so that their discharge current pulses which lead to the emission of the microwave energy (7) start virtually in phase.
摘要:
High-voltage switch, in particular for a microwave generator, which includes a spark gap which breaks down in order to switch when a high voltage is applied provided is a plurality of parallel-connected spark gaps (12, 12a, 12b), each having at least one electrode (13, 13a, 13b) with a series-connected fuse (14, 14a, 14b) which is irreversibly destroyed when the respective spark gap (12, 12a, 12b) breaks down.
摘要:
A microwave generator having a central electrode (14) which at the front end has a radiating element (22) and an external electrode (18) which coaxially surrounds the central electrode (14) along an axially extending resonator portion (16), wherein the two electrodes (14 and 18) are of a rotationally symmetrical configuration and define a spark gap (62) which sparks across when a high voltage is applied and radiates microwaves by way of the resonator portion (16) and the radiating element (22) of the central electrode (14). The spark gap (62) is in the form of an annular spark gap, which is determined by a connection element (26) which projects at the rear end axially centrally away from the central electrode (14) and an annular edge (44) of the external electrode (18), the edge being provided coaxially with respect to the connection element (26). The central electrode (14) and the external electrode (18) are arranged in a housing sleeve (12) of an electrically insulating material. The housing sleeve (12) preferably has an extension (58) defining a space (56) in which there is arranged a high voltage source (30), which is electrically conductively connected to the electrodes (14 and 18) of the microwave generator (10).
摘要:
In order to decouple the low-voltage charging source and its electrical drive from the high voltage which occurs in a Marx generator when the capacitor bank is switched from parallel connection to series connection, the high-voltage cable which is used on the output side and in which the conductive core is surrounded by a semiconductor for potential matching is also used on the input side, but for high-voltage decoupling after removal of the current-carrying core. Only the semiconductor in the high-voltage cable therefore remains as a resistance line for the small charging current into the parallel-connected capacitor bank of the Marx generator.
摘要:
The median frequency in the emission from a microwave generator (14), which operates in a pulsed manner, is shifted when the generator (14) operates between passive reflectors (23) whose axes are parallel thereto. In the axial direction, the reflectors (23) are approximately the same length (L) as the generator (14), with length matching through telescopic rods being preferable. However, the frequency is governed primarily by the distance (D) between the reflectors (23-23) between which the generator (14) is operated. Once desired resonance conditions have been found, for example for injection of microwave radiation into the mechanical structure of an external arrangement, this frequency relationship can be fixed by the magnitude of the length of the preferably telescopic coupling piece (16) between the resonator (13) and the antenna (18).
摘要:
Intensive microwave radiation in particular of great band width and energy over a relatively long period of time in the form of long pulse packets with a high pulse repetition frequency and a very high frequency spectrum can be achieved if microwave irradiation is effected during the discharge of a capacitive high-voltage generator (35) by way of the antenna (26) into a series of successive capacitors (13) to be connected in parallel. They are preferably constructed in the form of a concentric stack, connected to the antenna (26), of which the outer electrodes (16) which are at a reference potential are in the form of a continuous tube within which annular electrodes (15) are disposed on a carrier (20) in axially spaced relationship with each other in such a way that at the same time they act as the electrodes of arc switches (39) for successively switching on subsequent capacitors (13). The switch response characteristics and the charging time constants of the capacitor (13) which is respectively switched on therewith and the number thereof determine the length of the packet of high-frequency individual pulses (40) and thus the radiated microwave energy which can be still further increased by an increase in the capacitance of the capacitors (13).
摘要:
A microwave generator having a central electrode (14) which at the front end has a radiating element (22) and an external electrode (18) which coaxially surrounds the central electrode (14) along an axially extending resonator portion (16), wherein the two electrodes (14 and 18) are of a rotationally symmetrical configuration and define a spark gap (62) which sparks across when a high voltage is applied and radiates microwaves by way of the resonator portion (16) and the radiating element (22) of the central electrode (14). The spark gap (62) is in the form of an annular spark gap, which is determined by a connection element (26) which projects at the rear end axially centrally away from the central electrode (14) and an annular edge (44) of the external electrode (18), the edge being provided coaxially with respect to the connection element (26). The central electrode (14) and the external electrode (18) are arranged in a housing sleeve (12) of an electrically insulating material. The housing sleeve (12) preferably has an extension (58) defining a space (56) in which there is arranged a high voltage source (30), which is electrically conductively connected to the electrodes (14 and 18) of the microwave generator (10)
摘要:
The production and emission of high-energy microwave pulses are made possible by means of a device with a particularly compact design if the capacitor column (12-12) of the Marx generator (11) whose series circuit conventionally itself feeds a microwave generator with a matched antenna geometry, is now itself used—dispensing with the microwave generator and its antenna—directly as a resonator and Hertzian antenna dipole (24). Its oscillation response can be optimized by triggered spark gaps (14) for the switching of capacitors (12), and by means of plates (19) connected at the ends, in order to increase the stray capacitances.
摘要:
Capacitor based pulse forming networks and methods are provided which require fewer inductors are that pulsed more frequently to provide a smaller, lower mass, and lower inductance pulse forming network having better pulse shaping characteristics than conventional pulse forming networks. In one implementation, the invention can be characterized as a capacitor based pulse forming network comprising a plurality of inductors adapted to be coupled to a load, a plurality of capacitor units, and a plurality of switches. Each switch couples a respective capacitor unit to a respective inductor, wherein multiple capacitor units are coupled to each inductor by separate switches. The plurality of switches are adapted to non-simultaneously discharge at least some of the multiple capacitor units to provide non-simultaneous pulses through a given inductor to the load and not through other inductors. The non-simultaneous pulses form at least a portion of an output pulse waveform to the load.