摘要:
A low visual noise, jitterized pulse width modulation brightness control circuit is provided. The circuit uses a brightness control signal generating unit to receive a brightness adjusting signal and to generate a brightness control signal in response to the brightness adjusting signal. The brightness control pulse signal has a duty cycle or frequency varying in a predetermined range. An inverter coupled to the brightness control signal generating unit drives the fluorescent lamp in response to the brightness control pulse signal to reduce the visual interference due to the adjustment of the current beam density.
摘要:
A low visual noise, jitterized pulse width modulation brightness control circuit is provided. The circuit uses a brightness control signal generating unit to receive a brightness adjusting signal and to generate a brightness control signal in response to the brightness adjusting signal. The brightness control pulse signal has a duty cycle or frequency varying in a predetermined range. An inverter coupled to the brightness control signal generating unit drives the fluorescent lamp in response to the brightness control pulse signal to reduce the visual interference due to the adjustment of the current beam density.
摘要:
A low visual noise, jitterized pulse width modulation brightness control circuit is provided. The circuit uses a brightness control signal generating unit to receive a brightness adjusting signal and to generate a brightness control signal in response to the brightness adjusting signal. The brightness control pulse signal has a duty cycle or frequency varying in a predetermined range. An inverter coupled to the brightness control signal generating unit drives the fluorescent lamp in response to the brightness control pulse signal to reduce the visual interference due to the adjustment of the current beam density.
摘要:
A low visual noise, jitterized pulse width modulation brightness control circuit is provided. The circuit uses a brightness control signal generating unit to receive a brightness adjusting signal and to generate a brightness control signal in response to the brightness adjusting signal. The brightness control pulse signal has a duty cycle or frequency varying in a predetermined range. An inverter coupled to the brightness control signal generating unit drives the fluorescent lamp in response to the brightness control pulse signal to reduce the visual interference due to the adjustment of the current beam density.
摘要:
A thermal transfer donor element is provided which comprises a support, a light-to-heat conversion layer, an interlayer, and a thermal transfer layer. When the above donor element is brought into contact with a receptor and imagewise irradiated, an image is obtained which is free from contamination by the light-to-heat conversion layer. The construction and process of this invention is useful in making colored images including applications such as color proofs and color filter elements.
摘要:
A thermal transfer donor element is provided which comprises a support, a light-to-heat conversion layer, an interlayer, and a thermal transfer layer. When the above donor element is brought into contact with a receptor and imagewise irradiated, an image is obtained which is free from contamination by the light-to-heat conversion layer. The construction and process of this invention is useful in making colored images including applications such as color proofs and color filter elements.
摘要:
A thermal transfer donor element is provided which comprises a support, a light-to-heat conversion layer, an interlayer, and a thermal transfer layer. When the above donor element is brought into contact with a receptor and imagewise irradiated, an image is obtained which is free from contamination by the light-to-heat conversion layer. The construction and process of this invention is useful in making colored images including applications such as color proofs and color filter elements.
摘要:
A chemical munitions destruction system subjects the chemical agent and energetic materials to a series of treatment processes until a preselected level of destruction is achieved. The treatment processes include chemical neutralization and processing of both the chemical and energetic agents, biological treatment of the aqueous waste streams and catalytic oxidation of the air exhaust streams. In certain cases, the energetic agent and/or the propellant components of the munitions are converted to valuable chemicals by means of catalytic hydrotreating.