摘要:
An electronic module assembly (EMA) for use in controlling one or more personal restraint systems. A programmed processor within the EMA is configured to determine when a personal restraint system associated with each seat in a vehicle should be deployed. In addition, the programmed processor is configured to perform a diagnostic self-test to determine if the EMA and the personal restraint systems are operational. In one embodiment, results of the diagnostic self-test routine are displayed on a display included on the electronic module assembly. In an alternative embodiment, the results of the diagnostic self-test routine are transmitted via a wireless transceiver to a remote device. The remote device can include a wireless interrogator or can be a remote computer system such as a cabin management computer system.
摘要:
An electronic module assembly (EMA) for use in controlling one or more personal restraint systems. A programmed processor within the EMA is configured to determine when a personal restraint system associated with each seat in a vehicle should be deployed. In addition, the programmed processor is configured to perform a diagnostic self-test to determine if the EMA and the personal restraint systems are operational. In one embodiment, results of the diagnostic self-test routine are displayed on a display included on the electronic module assembly. In an alternative embodiment, the results of the diagnostic self-test routine are transmitted via a wireless transceiver to a remote device. The remote device can include a wireless interrogator or can be a remote computer system such as a cabin management computer system.
摘要:
An airbag assembly for leg flail protection and associated systems and methods are described herein. An airbag system configured in accordance with an embodiment of the present technology can include, for example, a housing having a cavity and an opening in communication with the cavity, an airbag stowed within the cavity, and an inflator operably coupled to the airbag. The airbag can be configured to deploy through the opening of the housing during a crash or other significant dynamic event. The airbag can deploy outwardly from the side-facing seat to reduce occupant leg rotation during the crash or other significant dynamic event. The airbag can be pushed out of the housing before it is fully inflated. The airbag can be stowed and include folded first and second opposing side portions such that when the airbag is deployed, the portion nearest the occupant unfurls toward the occupant prior to the other portion farthest from the occupant unfurling in a direction away from the occupant.
摘要:
An electronic module assembly (EMA) for use in controlling one or more personal restraint systems. A programmed processor within the EMA is configured to determine when a personal restraint system associated with each seat in a vehicle should be deployed. In addition, the programmed processor is configured to perform a diagnostic self-test to determine if the EMA and the personal restraint systems are operational. In one embodiment, results of the diagnostic self-test routine are displayed on a display included on the electronic module assembly. In an alternative embodiment, the results of the diagnostic self-test routine are transmitted via a wireless transceiver to a remote device. The remote device can include a wireless interrogator or can be a remote computer system such as a cabin management computer system.
摘要:
An airbag assembly for leg flail protection and associated systems and methods are described herein. An airbag system configured in accordance with an embodiment of the present technology can include, for example, a housing having a cavity and an opening in communication with the cavity, an airbag stowed within the cavity, and an inflator operably coupled to the airbag. The airbag can be configured to deploy through the opening of the housing during a crash or other significant dynamic event. The airbag can deploy outwardly from the side-facing seat to reduce occupant leg rotation during the crash or other significant dynamic event. The airbag can be pushed out of the housing before it is fully inflated. The airbag can be stowed and include folded first and second opposing side portions such that when the airbag is deployed, the portion nearest the occupant unfurls toward the occupant prior to the other portion farthest from the occupant unfurling in a direction away from the occupant.
摘要:
An electronic module assembly (EMA) for use in controlling one or more personal restraint systems. A programmed processor within the EMA is configured to determine when a personal restraint system associated with each seat in a vehicle should be deployed. In addition, the programmed processor is configured to perform a diagnostic self-test to determine if the EMA and the personal restraint systems are operational. In one embodiment, results of the diagnostic self-test routine are displayed on a display included on the electronic module assembly. In an alternative embodiment, the results of the diagnostic self-test routine are transmitted via a wireless transceiver to a remote device. The remote device can include a wireless interrogator or can be a remote computer system such as a cabin management computer system.
摘要:
An electronic module assembly for controlling the deployment of one or more airbags in an aircraft includes a power source, a crash sensor configured to produce a signal in response to a crash event and an accelerometer that is configured to produce a signal in response to a crash event. A processor starts a timer upon detection of the signal from the crash sensor. When the processor receives a signal from the crash sensor, the processor is configured to determine if a signal has also been received from the accelerometer and if signals from both the crash sensor and the accelerometer indicate a crash event then the processor reads a memory associated with an inflator. The processor reads a timing value selected for the inflator and fires the inflator when the timer has a value equal to the timing value selected for the inflator.
摘要:
An electronic module assembly for controlling the deployment of one or more airbags in an aircraft includes a power source, a crash sensor configured to produce a signal in response to a crash event and an accelerometer that is configured to produce a signal in response to a crash event. A processor starts a timer upon detection of the signal from the crash sensor. When the processor receives a signal from the crash sensor, the processor is configured to determine if a signal has also been received from the accelerometer and if signals from both the crash sensor and the accelerometer indicate a crash event then the processor reads a memory associated with an inflator. The processor reads a timing value selected for the inflator and fires the inflator when the timer has a value equal to the timing value selected for the inflator.
摘要:
An electronic module assembly (EMA) for use in controlling one or more personal restraint systems. A programmed processor within the EMA is configured to determine when a personal restraint system associated with each seat in a vehicle should be deployed. In addition, the programmed processor is configured to perform a diagnostic self-test to determine if the EMA and the personal restraint systems are operational. In one embodiment, results of the diagnostic self-test routine are displayed on a display included on the electronic module assembly. In an alternative embodiment, the results of the diagnostic self-test routine are transmitted via a wireless transceiver to a remote device. The remote device can include a wireless interrogator or can be a remote computer system such as a cabin management computer system.
摘要:
An electronic module assembly for controlling the deployment of one or more airbags in an aircraft includes a power source, a crash sensor configured to produce a signal in response to a crash event and an accelerometer that is configured to produce a signal in response to a crash event. A processor starts a timer upon detection of the signal from the crash sensor. When the processor receives a signal from the crash sensor, the processor is configured to determine if a signal has also been received from the accelerometer and if signals from both the crash sensor and the accelerometer indicate a crash event then the processor reads a memory associated with an inflator. The processor reads a timing value selected for the inflator and fires the inflator when the timer has a value equal to the timing value selected for the inflator.