Abstract:
A circuit for detecting motion of an object includes a semiconductor substrate having first and second opposing surfaces. The circuit also includes a magnetic field sensor disposed on the first surface of the substrate and configured to generate a respective plurality of magnetic field sensor output signals in response to a magnetic field associated with the object. At least one of the magnetic field sensor output signals is indicative of an angular position of the magnetic field with respect to the sensor. Additionally, at least one of the magnetic field sensor output signals is indicative of an amplitude of the magnetic field.
Abstract:
In one aspect, an integrated circuit (IC) includes a first magnetic field sensor configured to sense a ring magnet, a second magnetic field sensor configured to sense the ring magnet and processing circuitry configured to receive a first signal from the first magnetic field sensor and to receive a second signal from the second magnetic field sensor. The processing circuitry is further configured to control an on/off state of at least one light emitting diode (LED) and brightness of the LED based on movement and position of the ring magnet with respect to the first and second magnetic field sensors.
Abstract:
An integrated magnetic field sensor includes a magnetic field sensing circuit and a power driving circuit disposed upon or within a common substrate. A method of powering on and off a load uses the above integrated magnetic field sensor.
Abstract:
An electronic comparison circuit can identify at least three conditions of an input signal received by the electronic comparison circuit. A first one of the at least three conditions occurs when a value of the input signal is less than a first threshold value, a second one of the at least three conditions occurs when a value of the input signal is greater than the first threshold value and less than a second threshold value, and a third one of the at least three conditions occurs when a value of the input signal is greater than the second threshold value. A magnetic field sensor can use the electronic comparison circuit.
Abstract:
A circuit for detecting motion of an object includes a semiconductor substrate having first and second opposing surfaces. The circuit also includes a magnetic field sensor disposed on the first surface of the substrate and configured to generate a respective plurality of magnetic field sensor output signals in response to a magnetic field associated with the object. At least one of the magnetic field sensor output signals is indicative of an angular position of the magnetic field with respect to the sensor. Additionally, at least one of the magnetic field sensor output signals is indicative of an amplitude of the magnetic field.
Abstract:
An electronic comparison circuit can identify at least three conditions of an input signal received by the electronic comparison circuit. A first one of the at least three conditions occurs when a value of the input signal is less than a first threshold value, a second one of the at least three conditions occurs when a value of the input signal is greater than the first threshold value and less than a second threshold value, and a third one of the at least three conditions occurs when a value of the input signal is greater than the second threshold value. A magnetic field sensor can use the electronic comparison circuit.
Abstract:
In one aspect, an integrated circuit (IC) includes a first magnetic field sensor configured to sense a ring magnet, a second magnetic field sensor configured to sense the ring magnet and processing circuitry configured to receive a first signal from the first magnetic field sensor and to receive a second signal from the second magnetic field sensor. The processing circuitry is further configured to control an on/off state of at least one light emitting diode (LED) and brightness of the LED based on movement and position of the ring magnet with respect to the first and second magnetic field sensors.
Abstract:
A two-wire electronic circuit can sense a voltage across terminals of a transistor and control an electrical current of the two-wire electronic circuit in accordance with the sensed voltage.
Abstract:
A tracking ADC with adaptive slew rate boosting can dynamically adjust one or more of its operational parameters in response to detecting a slew rate limit condition. In some embodiments, slew rate boosting can include increasing the value of a digital error signal in response to detection of a slew rate limit condition. In other embodiments, slew rate boosting can include increasing a clock frequency of the tracking ADC in response to detection of a slew rate limit condition.
Abstract:
In one aspect, an integrated circuit (IC) includes a first magnetic field sensor configured to sense a ring magnet, a second magnetic field sensor configured to sense the ring magnet and processing circuitry configured to receive a first signal from the first magnetic field sensor and to receive a second signal from the second magnetic field sensor. The processing circuitry is further configured to control an on/off state of at least one light emitting diode (LED) and brightness of the LED based on movement and position of the ring magnet with respect to the first and second magnetic field sensors.