Abstract:
In an image calibration device 10, a calibration pattern is projected onto a screen 4 from each projector 3 under control of a personal computer or other calibration device 10a, pictures are taken by a digital camera or other image pick-up device 11, and the results are supplied to the calibration device 10a. The calibration device 10a uses the supplied picture data to calculate parameters in order to perform picture positioning, color adjustment, brightness adjustment and other adjustments and corrections, and based on the calculation results transforms the original picture data, generates and supplies signals indicating projection conditions to each of the projectors 3, and performs image calibration control of the pictures projected by each projector 3. Here at the time of taking pictures, by installing on the image pick-up device 11 a shielding member 12 formed into a tetragonal pyramid shape, the light-receiving part of the image pick-up device 11 and the screen are completely shielded from ambient external light. By this means, the measurement precision of the image pick-up device 11 is improved, and accurate and reliable image calibration is performed.
Abstract:
This invention provides equipment for fabricating partitioning ribs of a plasma display device. The equipment comprises a head, a driver, an X position sensor and a Y position sensor, a laser displacement sensor for detecting the distance of the head from a glass plate or substrate, a motor and a motor driver for moving the head relative to the glass plate, and a CPU for controlling various circuits. The head has nozzle members for ejecting partitioning rib grains by an electrostatic ejection method or ink jet technology to form partitioning ribs. The driver controls the volume of the partitioning rib grains ejected from the head. The X and Y position sensors detect the position of the head relative to the glass plate within a plane.
Abstract:
In a plastic molded semiconductor device in which inner leads overlap a semiconductor chip in a molded plastic body, the width of the chip may be close to the width of the plastic body without a decrease in the high resistance of the inner leads to the pull out thereof from the plastic body, and the layout of the inner leads may be unrestricted since the inner leads may occupy the region above the chip.
Abstract:
This imaging device includes an imaging element, a field rate conversion processing section, and a frame rate conversion processing section. The imaging element converts an image of a photoelectric subject photographically, and outputs a picture image signal which consists of frames at a first frame rate. The field rate conversion processing section converts the picture image signal at the first frame rate into a television signal at a second frame rate which is smaller than the first frame rate. The frame rate conversion processing section converts the picture image signal at the first frame rate into a cinema film signal at a third frame rate which is smaller than the first frame rate, and which is different from the second frame rate.
Abstract:
A coaxial type impedance matching device includes a matching device body including an external conductor and an internal conductor arranged in the external conductor, an input side dielectric disposed in the matching device body and including a first dielectric and a second dielectric, and an output side dielectric disposed in the matching device body and including a third dielectric and a fourth dielectric. Distance between opposed surfaces of the first dielectric and the second dielectric is a predetermined distance, which is in a range of Nλ/4−λ/6 to Nλ/4−λ/6, where λ represents a guide wavelength of an input signal in the matching device body and N represents odd number. Distance between opposed surfaces of the third dielectric and the fourth dielectric is the predetermined distance.
Abstract:
The present invention provides a multi-display device that has a plurality of projectors and constructs one image as a whole. Partial images projected on a screen from the projectors overlap to have the edges thereof superposed on edges of adjoining partial images in shared fields on the screen. A sheet interceptor intercepts part of light to be projected on a shared field so that the luminance level in the shared field will agree with the luminance levels in the other fields except the shared fields. An interceptor portion of the sheet interceptor, which intercepts light from the right-hand side of a range on the screen within which a partial image is projected, can be displaced horizontally relative to an interceptor portion thereof that intercepts light from the left-hand side thereof. Likewise, an interceptor portion of the sheet interceptor that intercepts light from the upper side of the projected range can be displaced vertically relative to an interceptor portion thereof that intercepts light from the lower side thereof.
Abstract:
A wire-bonding method of an IC uses a capillary having a hole for guiding a bonding wire, the capillary moving vertically and horizontally with respect to the IC so as to bridge a loop between a first bonding and a subsequent second bonding of the wire on predetermined places. The method comprises the steps of heating a wire end extruding from a first opening of the hole to form a ball of the wire; performing the first bonding by a nail head bonding method; pulling the wire coming from the second opening. The tension imposed on the wire hardens a portion of the wire having been softened during the heating process, but is adequately low not break the wire; and moving the capillary so as to perform the second bonding. In a wire-bonding apparatus including a spool and a capillary having a hole to guide the wire therethrough, where the capillary does a first bonding by a nail head bonding method and is movable vertically and horizontally so as to bridge a loop between the first bonding and a subsequent second bonding, there is provided a tension bar, located behind the capillary and rectangular to the wire, to hook the wire at a portion between the capillary and the spool located apart from the center line of the hole. The tension bar is movable from the capillary so as to pull the wire via the hole from the first bonding thus completed. Thus imposed tension hardens the portion of the wire soften by the heat process.
Abstract:
This imaging device includes an imaging element, a field rate conversion processing section, and a frame rate conversion processing section. The imaging element converts an image of a photoelectric subject photographically, and outputs a picture image signal which consists of frames at a first frame rate. The field rate conversion processing section converts the picture image signal at the first frame rate into a television signal at a second frame rate which is smaller than the first frame rate. The frame rate conversion processing section converts the picture image signal at the first frame rate into a cinema film signal at a third frame rate which is smaller than the first frame rate, and which is different from the second frame rate.
Abstract:
A solid-state image pick-up system according to the present invention comprises an image pick-up lens for making incident light from a subject form an image on an image pick-up surface, a light source alternately emitting a plurality of color light beams at a given period, a solid-state image pick-up device for receiving the subject light separated through the color separating section to convert it into a given subject picture signal, an image pick-up mode selecting circuit for selecting one of a standard mode for picking up a dynamic mode and a high-sensitivity mode for picking up a still picture, and a control section for controlling the period for the color separating section on the basis of the output of the image pick-up mode selecting circuit.
Abstract:
A multi vision device including a projection device constituted by an array of a plurality of projection units each including a rear projection projector and a housing to support the rear projection projector; and a screen located away from the projection device and displays pictures projected from the projection device. Pictures projected from the adjoining projection units overlap on the screen and are configured to form one picture on the screen. In this manner, highly accurate projected pictures are obtained with no borders between the pictures adjacent to each other. The height and width of the pictures projected onto the screen are greater than the height and width on the side of the projection device that faces the screen.