Abstract:
A flow cell, for detecting a fluidic sample separated by a sample separation apparatus, includes a cuvette, a flow channel formed at least partially in the cuvette and configured to enable a flow of the separated fluidic sample through the flow channel, an electromagnetic radiation inlet at which an excitation electromagnetic radiation beam is couplable into the cuvette, and an electromagnetic radiation outlet at which an emission electromagnetic radiation beam, generated by an interaction between the excitation electromagnetic radiation beam and the separated fluidic sample, is couplable out of the cuvette. A geometry of the cuvette is configured so that at least one point at the excitation backside surface of the cuvette is outside of a direct field of view of the electromagnetic radiation outlet.
Abstract:
A fluid separation system for separating compounds of a sample fluid in a mobile phase comprises a detector adapted to detect separated compounds by providing an optical stimulus signal to the sample fluid and receiving a response signal on the optical stimulus signal. The detector comprises a light source adapted to provide an output light beam as the optical stimulus signal. The light source comprises a plurality of light emitting elements each adapted to emit a light beam having a respective wavelength, and a diffracting element. The plurality of light emitting elements are arranged that emitted light beams impinging on the diffracting element in a respective angle dependent on the respective wavelength are diffracted by the diffracting element into the output light beam.
Abstract:
A micromachined flow cell (100), comprising a substrate (102), and a freestanding tube (104) delimiting a fluidic conduit (800) therein and being integrally formed from material of the substrate (102).