Abstract:
A liquid crystal display and a test circuit thereof are provided. The test circuit has a plurality of signal pads, a first data distributor, a plurality of logic circuit units and N switches. N is a positive integer. The signal pads are configured to receive a test data signal, a voltage signal, an enable signal and a plurality of first switch control signals. The first data distributor distributes the test data signal to N output terminals of the first data distributor. Each of the logic circuit units generates a second switch control signal according to the voltage signal, the enable signal and a corresponding one of the first switch control signals. Each of the switches controls the electrical connection between an output terminal of the first data distributor coupled thereto and at least a data line coupled thereto.
Abstract:
A display includes a plurality of pixels, a plurality of scan lines and a plurality of data lines. Each pixel includes a first color sub-pixel, a second color sub-pixel and a third color sub-pixel. The scan lines and the data lines are coupled to the pixels. Two color sub-pixels in the same row coupled to the same data line are coupled to different scan lines, and all of the second color sub-pixels in the same row are coupled to the same scan line.
Abstract:
A shift register includes shift register units, in which at least one shift register unit is coupled to a forestage shift register unit and a post-stage shift register unit, where the at least one shift register unit includes a signal input circuit, a signal output circuit, a pull down circuit and a switching circuit. The signal input circuit electrically coupled to the forestage shift register unit can receive a logic signal from the forestage shift register. The signal output circuit is electrically coupled to the signal input circuit via a control signal terminal and is electrically coupled to the post-stage shift register unit. The signal output circuit can receive a first clock signal. The pull down circuit is electrically coupled to or electrically isolated from the control signal terminal through the switching circuit.
Abstract:
A shift register circuit includes a first shift register string and a second shift register string. The first shift register string is configured to receive a first start signal and output a first-stage control signal. The second shift register string, electrically connected to the first shift register string, is configured to receive the first-stage control signal and a second start signal and output the first pulse of a first-stage scan signal according to the first-stage control signal and the second start signal and consequently output the second pulse of the first-stage scan signal according to the second start signal; wherein the first and second pulses are configured to have different pulse widths. A driving method of a shift register circuit is also provided.
Abstract:
A display includes a plurality of pixels, a plurality of scan lines and a plurality of data lines. Each pixel includes a first color sub-pixel, a second color sub-pixel and a third color sub-pixel. The scan lines and the data lines are coupled to the pixels. Two color sub-pixels in the same row coupled to the same data line are coupled to different scan lines, and all of the second color sub-pixels in the same row are coupled to the same scan line.
Abstract:
A shift register includes shift register units, in which at least one shift register unit is coupled to a forestage shift register unit and a post-stage shift register unit, where the at least one shift register unit includes a signal input circuit, a signal output circuit, a pull down circuit and a switching circuit. The signal input circuit electrically coupled to the forestage shift register unit can receive a logic signal from the forestage shift register. The signal output circuit is electrically coupled to the signal input circuit via a control signal terminal and is electrically coupled to the post-stage shift register unit. The signal output to circuit can receive a first clock signal. The pull down circuit is electrically coupled to or electrically isolated from the control signal terminal through the switching circuit.
Abstract:
A display device includes multiple pixels, a gate driver and a data driver. Each pixel includes a transistor and a pixel capacitor electrically coupled to the transistor. The gate driver is configured to turn on the transistor of a first pixel for one time during a first turn-on period of multiple turn-on cycles of a frame cycle of a frame displayed by the display device. The data driver is configured to charge the pixel capacitor of the first pixel via the transistor of the first pixel to a first over-charge voltage and a data voltage during an over-charge period and a recovery period of the first turn-on period. The first over-charge voltage is different from the data voltage. A method for driving the display device is also provided.
Abstract:
A driving method for a display panel is provided. The display panel includes at least a first common signal line, at least a second common signal line and a plurality of pixels arranged as a pixel array. The pixel array includes a first pixel row and a second pixel row electrically connected to the first common signal line and the second common signal line, respectively. The driving method includes steps of: generating a first AC common signal; generating a second AC common signal, wherein the first AC common signal and the second AC common signal are inverse to each other; and providing the first and second AC common signal to the first and second pixel rows through the first and second common signal lines, respectively, by way of N-frame switch, wherein N is a positive integer.
Abstract:
A shift register includes shift register units, in which at least one shift register unit is coupled to a forestage shift register unit and a post-stage shift register unit, where the at least one shift register unit includes a signal input circuit, a signal output circuit, a pull down circuit and a switching circuit. The signal input circuit electrically coupled to the forestage shift register unit can receive a logic signal from the forestage shift register. The signal output circuit is electrically coupled to the signal input circuit via a control signal terminal and is electrically coupled to the post-stage shift register unit. The signal output circuit can receive a first clock signal. The pull down circuit is electrically coupled to or electrically isolated from the control signal terminal through the switching circuit.
Abstract:
A liquid crystal display and a test circuit thereof are provided. The test circuit has a plurality of signal pads, a first data distributor, a plurality of logic circuit units and N switches. N is a positive integer. The signal pads are configured to receive a test data signal, a voltage signal, an enable signal and a plurality of first switch control signals. The first data distributor distributes the test data signal to N output terminals of the first data distributor. Each of the logic circuit units generates a second switch control signal according to the voltage signal, the enable signal and a corresponding one of the first switch control signals. Each of the switches controls the electrical connection between an output terminal of the first data distributor coupled thereto and at least a data line coupled thereto.