Abstract:
A method of predicting thermally induced aberrations of a projection system for projecting a radiation beam, the method comprising: calculating an irradiance profile for at least one optical element of the projection system from a power and illumination source pupil of the radiation beam, estimating a temperature distribution as a function of time in the at least one optical element of the projection system using the calculated irradiance profile for the at least one optical element of the projection system; calculating the thermally induced aberrations of the projection system based on the estimated temperature distribution and a thermal expansion parameter map associated with the at least one optical element of the projection system, wherein the thermal expansion parameter map is a spatial map indicating spatial variations of thermal expansion parameters in the at least one optical element of the projection system or a uniform map.
Abstract:
A control system for a positioning system, for positioning a driven object, e.g. in a lithographic apparatus, in N dimensions has M sensors, where M>N. A transformation module converts the M measurements by the sensors into a positional estimate in N dimensions taking into account compliance of the driven object.
Abstract:
A lithographic apparatus includes a driven object having compliant dynamics; a plurality of actuators configured to act on the driven object, wherein the plurality of actuators are over-determined in an actuator degree of freedom; a control system including a transformation matrix configured to generate controller output signals for each of the plurality of actuators in response to a setpoint, wherein the transformation matrix is configured such that the controller output signals do not excite the compliant dynamics of the driven object in at least one degree of freedom.