Abstract:
A hard film is formed on an insulation film formed on a semiconductor substrate by vaporizing a silicon-containing hydrocarbon compound to provide a source gas, introducing a reaction gas composed of the source gas and optionally an additive gas such as alcohol to a reaction space of a plasma CVD apparatus, and applying low-frequency RF power and high-frequency RF power. The silicon-containing hydrocarbon compound includes a cyclic Si-containing hydrocarbon compound and/or a linear Si-containing hydrocarbon compound, as a basal structure, with reactive groups for form oligomers using the basal structure. The residence time of the reaction gas in the reaction space is lengthened by reducing the total flow of the reaction gas in such a way as to form a siloxan polymer film with a low dielectric constant.
Abstract:
An insulation film is formed on a semiconductor substrate by vaporizing a silicon-containing hydrocarbon compound to provide a source gas, introducing a reaction gas composed of the source gas and an additive gas such as an inert gas and oxidizing gas to a reaction space of a plasma CVD apparatus, and depositing a siloxan polymer film by plasma polymerization at a temperature of -50null C.-100null C. The residence time of the reaction gas in the reaction space is lengthened by reducing the total flow of the reaction gas in such a way as to form a siloxan polymer film with a low dielectric constant such as 2.5.
Abstract:
An insulation film is formed on a semiconductor substrate by vaporizing a silicon-containing hydrocarbon compound to provide a source gas, introducing a reaction gas composed of the source gas and an additive gas such as an inert gas and oxidizing gas to a reaction space of a plasma CVD apparatus. The silicon-containing hydrocarbon compound includes a cyclosiloxan compound or a linear siloxan compound, as a basal structure, with reactive groups for form oligomers using the basal structure. The residence time of the reaction gas in the reaction space is lengthened by reducing the total flow of the reaction gas in such a way as to form a siloxan polymer film with a. low dielectric constant.
Abstract:
An insulation film is formed on a semiconductor substrate by a method including the steps of: (i) introducing a source gas comprising a compound composed of at least Si, C, and H into a chamber; (ii) introducing in pulses an oxidizing gas into the chamber, wherein the source gas and the oxidizing gas form a reaction gas; and (iii) forming an insulation film on a semiconductor substrate by plasma treatment of the reaction gas. The plasma treatment may be plasma CVD processing.
Abstract:
A siloxan polymer insulation film has a dielectric constant of 3.1 or lower and has nullSiR2Onull repeating structural units with a C atom concentration of 20% or less. The siloxan polymer also has high thermal stability and high humidity-resistance. The siloxan polymer is formed by directly vaporizing a silicon-containing hydrocarbon compound of the formula SinullOnullnull1R2nullnullnullnull2(OCnH2nnull1)null wherein null is an integer of 1-3, null is 2, n is an integer of 1-3, and R is C1-6 hydrocarbon attached to Si, and then introducing the vaporized compound with an oxidizing agent to the reaction chamber of the plasma CVD apparatus. The residence time of the source gas is lengthened by reducing the total flow of the reaction gas, in such a way as to form a siloxan polymer film having a micropore porous structure with low dielectric constant.